UTKAL UNIVERSITY

REGULATIONS & SYLLABUS

UNDER GRADUATE PROGRAMME IN
BACHELOR OF SCIENCE
(HONOURS & PASS)-CBCS PATTERN

Effective from Admission Batch: 2016 – 2017
(Applicable to Autonomous Colleges/Affiliated Colleges/DDCE)
TABLE OF CONTENTS

1. REGULATIONS Pages: 01-05.

2. STRUCTURE OF THE SYLLABUS(HONS. & PASS) 06-09.

3. ABILITY ENHANCEMENT COMPULSORY COURSES(AECC) (FOR ALL SUBJECTS) 10.

5. BIO-TECHNOLOGY (PASS) 32-48.

6. BOTANY (HONS.) 49-99.

7. BOTANY (PASS) 100-129.

8. CHEMISTRY (HONS.) 130-173.

9. CHEMISTRY (PASS) 174-192.

11. BCA 211-227.

12. ITM 228-246.

13. GEOGRAPHY (HONS.) 247-274.

14. GEOGRAPHY (PASS) 275-287.

15. GEOLOGY (HONS.) 288-307.

16. MATHEMATICS (HONS.) 308-339.

17. MATHEMATICS (PASS) 340-353.

18. PHYSICS (HONS.) 354-402.

19. PHYSICS (PASS) 403-420.

20. PSYCHOLOGY (HONS.) 421-461.

21. PSYCHOLOGY (PASS) 462-476.

22. STATISTICS (HONS.) 477-497.

23. STATISTICS (PASS) 498-504.

24. ZOOLOGY (HONS.) 505-530.

25. ZOOLOGY (PASS) 531-551.
1. Eligibility

1.1 Higher Secondary/+2/ Senior Secondary or any other equivalent examination passed from any Board/Council established by the Govt. of India or any State Govt. or any other equivalent examination recognized by Central Board of Secondary Education/Council of Higher Secondary Education, Govt. of Odisha/Dept of Higher Education/Dept. of Industry or any other Dept of Govt. of Odisha or Utkal University. Those joining B.Sc. Programme must have passed the above examination under the faculty of Science/Technology/Engineering/Pharmacy etc. There shall be no such restriction for joining BA/ B.Com stream.

1.2 Students ordinarily may be selected for admission through Entrance Test, Group Discussion and Personal Interview and/or a combination of these with due weighage to career to be decided by the Autonomous College or Director, Higher Education. DDCE would admit students on first come first serve basis. The Govt. of Odisha may lay down admission process for colleges under its control.

1.3 Admission Policy would be decided by the Academic Council of the respective Autonomous Colleges and for affiliated colleges Government will decide the admission policy.

1.4. Directorate of Distance & Continuing Education would decide its own admission policy.

2. Duration

2.1 At least three years of six semesters in toto. In case of professional courses the duration may be more as per the direction of regulatory bodies established under Law.

2.2 Odd semester is from June to December (i.e., Sem.-I, Sem.-III & Sem.-V semester). The examination shall be held normally in the month of November - December.

2.3 Even semester is from January to June (i.e., Sem.-II, Sem.-IV & Sem.-VI semester). The examination shall be held normally in the month of May - June. However the Final Semester shall be conducted in April and result shall be published by end of May.

2.4 A student would be required to complete the course within six academic years from the date of admission.

2.5 A student may opt for fast track of completing all the six semesters in two years provided she/he has at least 2(two) years industry/organizational experience after +2. Such permission would be granted at the discretion of the Principal of the Autonomous Colleges and DDCE. This clause shall not be applicable to affiliated, non autonomous colleges.

3. Compulsory Registration in Semester-I

3.1 Registration for Semester-I is compulsory. A candidate admitted to +3 Courses but not registered for 1st semester examination, his/her admission will be automatically cancelled.
3.2 A candidate may take a blank Semester: A blank Semester has to be clubbed with next Odd or Even Semester as the case may be i.e. Sem.-II, Sem.-IV and Sem.-VI/Sem.-I, Sem.-III and Sem.-V. The Hostel policy for blank semester is to be decided by colleges as per their suitability. Hostel accommodation cannot be claimed as a right for a blank semester. (Blank semester is not to be confused as repetition due to failure).

3.3 75% attendance for non DDCE students is a requirement for being eligible to appear at Examination Up to 15% waiver may be granted by the College Principal at discretion on Health Ground or participation in sports, cultural activities, NCC and NSS activities etc.

3.4 A student may clear backlog papers within 6 years. Improvement if any has to be completed within 4 years.

3.5 A student may register for extra credit i.e. register for additional papers under the same faculty or outside the faculty under an autonomous college or DDCE provided they are in a position to facilitate such teaching.

4. Weightage Distribution (Percentage) for Evaluation

- Theory Subjects

<table>
<thead>
<tr>
<th></th>
<th>Mid Term Test-I</th>
<th>Mid Term Test-II</th>
<th>End Term Test</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>10</td>
<td>10</td>
<td>80</td>
<td>100</td>
</tr>
</tbody>
</table>

- Subjects with Practical

<table>
<thead>
<tr>
<th></th>
<th>Unit Test-I</th>
<th>Unit Test-II</th>
<th>End Term Test</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>A-Theory</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>B-Practical</td>
<td></td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>10</td>
<td>A-50</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>B-30(20+10-Record)</td>
<td></td>
</tr>
</tbody>
</table>

- Dissertation/Project Work

<table>
<thead>
<tr>
<th>Identification</th>
<th>Review of Literature</th>
<th>Methodology</th>
<th>Findings</th>
<th>Analysis</th>
<th>Viva-Voce</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>of problem</td>
<td>10</td>
<td>10</td>
<td>25</td>
<td>25</td>
<td>20</td>
<td>100</td>
</tr>
</tbody>
</table>

Note: For the DDCE unit tests, quizzes, presentation, seminar etc. may not be introduced immediately.

5. Grading System

5.1
<table>
<thead>
<tr>
<th>Grade</th>
<th>Marks secured out of 100</th>
<th>Grade points</th>
</tr>
</thead>
<tbody>
<tr>
<td>Outstanding</td>
<td>'O'</td>
<td>90 – 100</td>
</tr>
<tr>
<td>Excellent</td>
<td>'A+'</td>
<td>80 – 89</td>
</tr>
<tr>
<td>Very Good</td>
<td>'A'</td>
<td>70 – 79</td>
</tr>
<tr>
<td>Good</td>
<td>'B+'</td>
<td>60 – 69</td>
</tr>
<tr>
<td>Above average</td>
<td>B</td>
<td>50 – 59</td>
</tr>
<tr>
<td>Fair</td>
<td>'C'</td>
<td>40 – 49</td>
</tr>
<tr>
<td>Pass</td>
<td>'D'</td>
<td>30 – 39</td>
</tr>
<tr>
<td>Failed</td>
<td>'F'</td>
<td>Below 30</td>
</tr>
</tbody>
</table>

NOTE:

- A Candidate has to secure 30% or above to pass in each of the Papers.
- The candidate obtaining Grade-'F' is considered failed and will be required to clear the back paper(s) in the subsequent examinations within the stipulated time.
- The candidate securing Grade-'B' and above in Core/Honours papers in aggregate will be awarded Honours.
- The candidate securing Grade-'B+' and above in aggregate in first appearance will be awarded Honours with Distinction/Distinction (for pass/regular course).
- Any candidate filling the forms for appearing in back papers/improvement shall not be awarded Distinction.

5.2 A transitory letter Grade-I (carrying points 2) shall be introduced for cases where the results are incomplete. This grade shall automatically be converted into appropriate grade(s) as and when the results are complete.

5.3 A student's level of competence shall be categorized by a **GRADE POINT AVERAGE** to be specified as:

- SGPA: Semester Grade Point Average
- CGPA: Cumulative Grade Point Average

(a) **POINT:** Integer equivalent of each letter grade.

(b) **CREDIT:** Integer signifying the relative emphasis of individual course item(s) in a semester as indicated by the Course structure and syllabus.

- **CREDIT POINT:** \((b) \times (a)\) for each course item.
- **CREDIT INDEX:** \(\sum\) CREDIT POINT of course items.
- **GRADE POINT AVERAGE:** \(\frac{\sum\text{CREDIT INDEX}}{\sum\text{CREDIT}}\).

SEMESTER GRADE POINT AVERAGE (SGPA) = \(\frac{\text{CREDIT INDEX for a semester}}{\sum\text{CREDIT}}\).

CUMULATIVE GRADE POINT AVERAGE (CGPA)

\[
\frac{\text{CREDIT INDEX of all previous Semester up to the 6th semester}}{\sum\text{CREDIT}}.
\]
5.4 In addition to the points marks/percentage would also be awarded and shall also be reflected in the Mark Sheet.

5.5 The details of grading system shall be printed on the backside of University Mark-sheet.

6. Repeat Examination

6.1 A student has to clear back papers (i.e., in the paper/papers one has failed) by appearing at subsequent semester examinations within six years from the date of admission.

6.2 A student may appear improvement (repeat) in any number of papers in the immediate subsequent examination. The higher marks shall be retained.

6.3 Improvement has to be completed with 4-yrs. from the date of admission.

7. Hard case Rule

7.1 2% of grace mark on the aggregate mark subject to maximum of 5(five) marks in single paper shall be given. This shall be applicable in each semester.

7.2 0.5(point five percent) grace mark can be given for award of B Grade in each semester provided grace mark under 7.1 has not been awarded.

8. Examination Question Pattern(Suggestive)

8.1 The end semester examination will be of three hours irrespective of marks.

8.2 For subject without having practical full marks are 100 per paper out of which 20 marks is allotted for Mid-Semester Examination (Internal) and 80 marks for end semester examination.

The question papers shall be divided into two parts such as Group-A & Group-B.

Group-A will carry 10 short questions of two marks each. The answer should be within two sentences.

There shall be 5 long type questions in Group-B with one alternative each have to be attempted and all questions shall be of equal value (12 marks × 5).

For subject with practical full marks are 100 per paper out of which 20 marks is allotted for Mid-Semester Examination, 50 is for End Semester Examination and 30 is for practical.

The question papers shall be divided into two parts such as Group-A & Group-B.

Group-A will carry 10 short questions of one mark each. The answer should be within two sentences.

There shall be 5 long-type questions with one alternative each have to be attempted for subjects having practical. The questions shall be of equal value (8 Marks × 5).

Practical will carry 30 marks out of which 10 will be for records.

8.3 Model answers for long questions should be between 700 – 1000 words.
9. Each Department shall have a designated Teacher in-charge of Examination to be decided by the Principal in addition to the Controller of Examinations of the College (applicable to autonomous colleges).

10. The Internal Evaluation would be the sole responsibility of Teacher offering the course.

11. Suitable modifications may be made by the Autonomous Colleges keeping in view the UGC guideline for Autonomous Colleges, University guidelines from time to time and State Govt. guidelines from time to time.

12. Broad Principles of Credit Transfer

 There should be a small group to consider all cases of credit transfer. The group should consist of the following:

 Chairman: Chairman P.G Council (for University affiliated colleges)/Director, DDCE for DDCE/Principals of the Autonomous College/Controller of Examinations, Utkal University.

 Convener: Dy. Controller of Examinations for University affiliated colleges/Faculty member of DDCE for DDCE/Controller of Examinations of respective Autonomous colleges for Autonomous colleges.

 Members: Four teachers to be nominated by the Chairman, P.G. Council/Director, DDCE/Principal of Autonomous Colleges as the case may be.

Waiver for courses covered under other colleges not withstanding differences in detailed course can be granted. Papers which one has not studied even though they are prescribed for earlier semesters can be covered by the students.

Other Broad Principles: Student transferred after Semester-I examination cannot be given position or medal under autonomous colleges. Students who have failed/remained absent/appeared for improvement shall not be eligible for University Gold medal or Rank. Students who have been granted credit waiver under credit transfer system cannot be awarded Gold medal or position.
DETAILS OF COURSES UNDER BACHELOR OF SCIENCE(HONOURS)

<table>
<thead>
<tr>
<th>Course</th>
<th>Theory+Practical</th>
<th>Theory + Tutorial</th>
</tr>
</thead>
<tbody>
<tr>
<td>I. Core Course (6 Credits)</td>
<td>14 × 4 = 56</td>
<td>14 × 5 = 70</td>
</tr>
<tr>
<td>(14 Papers)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Core Course Practical / Tutorial*</td>
<td>14 × 2 = 28</td>
<td>14 × 1 = 14</td>
</tr>
<tr>
<td>(14 Papers)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>II. Elective Course (6 Credits)</td>
<td>4 × 4 = 16</td>
<td>4 × 5 = 20</td>
</tr>
<tr>
<td>(8 Papers)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A.1. Discipline Specific Elective</td>
<td>4 × 2 = 8</td>
<td>4 × 1 = 4</td>
</tr>
<tr>
<td>(4 Papers)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A.2. Discipline Specific Elective Practical/Tutorial*</td>
<td>4 × 2 = 8</td>
<td>4 × 1 = 4</td>
</tr>
<tr>
<td>(4 Papers)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B.1. Generic Elective/Interdisciplinary</td>
<td>4 × 4 = 16</td>
<td>4 × 5 = 20</td>
</tr>
<tr>
<td>(4 Papers)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B.2. Generic Elective, Practical/</td>
<td>4 × 2 = 8</td>
<td>4 × 1 = 4</td>
</tr>
<tr>
<td>Tutorials* (4 Papers)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Optional Dissertation or Project Work in place of one Discipline Specific elective paper (6 credits) in Semester-VI.

III. Ability Enhancement Courses

1. Ability Enhancement Compulsory Courses (AECC)
 - (2 Papers of 4 credit each) 2 × 4 = 8 2 × 4 = 8
 - Environmental Science/English/
 - Hindi/MIL Communication

2. Skill Enhancement Courses (SEC)
 - (Min.2)(2 Papers of 4 credit each) 2 × 4 = 8 2 × 4 = 8

Total Credit 148 148

- Institute should evolve a system/policy about ECA/General Interest/Hobby/Sports NCC/NSS/related courses on its own.
- Wherever there is a practical there will be no tutorial and vice-versa.
- For Generic Elective, there shall be two subjects other than the Core subject having two papers each.
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>C-1 C-2</td>
<td>Environmental Science</td>
<td></td>
<td></td>
<td>GE-1A</td>
</tr>
<tr>
<td>II</td>
<td>C-3 C-4</td>
<td>MIL Communication (Oriya/Hindi)</td>
<td></td>
<td></td>
<td>GE-2A</td>
</tr>
<tr>
<td>III</td>
<td>C-5 C-6 C-7</td>
<td></td>
<td>SEC-1 (English Communication)</td>
<td></td>
<td>GE-1B</td>
</tr>
<tr>
<td>IV</td>
<td>C-8 C-9 C-10</td>
<td></td>
<td>SEC-2</td>
<td></td>
<td>GE-2B</td>
</tr>
<tr>
<td>V</td>
<td>C-11 C-12</td>
<td></td>
<td>DSE-1</td>
<td>DSE-2</td>
<td></td>
</tr>
<tr>
<td>VI</td>
<td>C-13 C-14</td>
<td></td>
<td>DSE-3</td>
<td>DSE-4</td>
<td></td>
</tr>
</tbody>
</table>
DETAILS OF COURSES UNDER BACHELOR OF SCIENCE (REGULAR/PASS)

<table>
<thead>
<tr>
<th>Course</th>
<th>Theory + Practical</th>
<th>Theory + Tutorial</th>
</tr>
</thead>
<tbody>
<tr>
<td>I. Core Course (6 Credits)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(12 Papers)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(4 Courses from each of the 3 Disciplines of choice)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Core Course Practical / Tutorial*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(12 Practical/Tutorials*)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(4 Courses from each of the 3 Disciplines of choice)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>II. Elective Course (6 Credits)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(6 Papers)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Two papers from each discipline of choice including paper of interdisciplinary nature)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Elective Course Practical/Tutorials*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(6 Practical/Tutorials*)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Two Papers from each Disciplines of choice including paper of interdisciplinary nature)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Optional Dissertation/Project Work in place of one Discipline elective paper (6 credits) in Semester-VI.

III. Ability Enhancement Courses

1. **Ability Enhancement Compulsory Courses (AECC)**
 - (2 Papers of 4 credit each)
 - 2 × 4 = 8
 - Environmental Science/English/
 - Hindi/MIL Communication
 - 2 × 4 = 8

2. **Skill Enhancement Courses (SEC)**
 - (4 Papers of 4 credit each)
 - 4 × 4 = 16

| Total Credit | 132 | 132 |

- Institute should evolve a system/policy about ECA/General Interest/Hobby/Sports NCC/NSS/related courses on its own.
- Wherever there is a practical, there will be no tutorial and vice-versa.
SCHEME FOR CHOICE BASED CREDIT SYSTEM
BACHELOR OF SCIENCE (REGULAR/ PASS)

<table>
<thead>
<tr>
<th>Semester</th>
<th>Core Course(12)</th>
<th>Ability Enhancement Compulsory Course (AECC)(2)</th>
<th>Skill Enhancement Course (SEC)(2)</th>
<th>Discipline Specific Elective (DSE)(6)</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>DSC-1A</td>
<td>Environmental Science</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>DSC-2A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>DSC-3A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>II</td>
<td>DSC-1B</td>
<td>MIL Communication (Oriya/Hindi)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>DSC-2B</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>DSC-3B</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>III</td>
<td>DSC-1C</td>
<td></td>
<td>SEC-1(English Communication)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>DSC-2C</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>DSC-3C</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IV</td>
<td>DSC-1D</td>
<td></td>
<td>SEC-2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>DSC-2D</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>DSC-3D</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V</td>
<td></td>
<td></td>
<td>SEC-3</td>
<td>DSE-1A</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>DSE-2A</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>DSE-3A</td>
</tr>
<tr>
<td>VI</td>
<td></td>
<td></td>
<td>SEC-4</td>
<td>DSE-1B</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>DSE-2B</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>DSE-3B</td>
</tr>
</tbody>
</table>
ABILITY ENHANCEMENT COMPULSORY COURSES (AECC) (For all Subjects)

SEMIESTER-I
AECC-I: Environmental Science
Max. Marks:100 (End-Sem.:80 Marks, Mid-Sem.: 20 Marks)

UNIT-I

UNIT-II
Environment Pollution: Air Pollution, Water Pollution, Soil Pollution, Noise Pollution, Thermal Pollution, Radiation Pollution, Natural Disasters and their Management.

UNIT-III

UNIT-IV
Environmental Movements in India: Grassroot Environmental movements in India, Role of women, Environmental Movements in Odisha, State Pollution Control Board, Central Pollution Control Board.

UNIT-V

SEMIESTER-II
AECC-II: MIL Communication (Odia/Hindi)
Max. Marks:100 (End-Sem.:80 Marks, Mid-Sem.: 20 Marks)

(Detailed syllabus for this paper is available in MIL Odia/Hindi Communication syllabus).
UNIT-I

UNIT-II

UNIT-III
Enzymes: Nomenclature and classification of Enzymes, Holoenzyme, apoenzyme, Cofactors, coenzyme, prosthetic groups, Enzyme activity, Specific activity, Common feature of active sites, Enzyme specificity.

UNIT-IV

PRACTICAL
1. To study activities of any enzyme under optimum conditions.
2. To study the effect of pH, temperature on the activity of salivary amylase enzyme.
3. Determination of pH optima, temperature optima, Km value, Vmax value. Effect of inhibitor (Inorganic phosphate) on the enzyme activity.
4. Estimation of blood by glucose oxidase method. item Principles of Colorimetry: (i) Verification of Beers Lambert’s law, estimation of protein. (ii) To study relation between absorbance and % transmission.
5. Preparation of buffers.
7. Qualitative tests for Carbohydrates, lipids and proteins.

C-2: CELL BIOLOGY

(Credits-6: Theory-4, Practical-2)-Max. Marks: 100

THEORY (Each class 1 hr.): Marks-70

PRACTICAL (Each class 2 hrs.): Marks-30

Lectures: 60 (40 Theory + 20 Practical classes)

UNIT-I

UNIT-II
Cytoskeleton and cell motility: Structure and function of microtubules, Microfilaments, Intermediate filaments. Endoplasmic reticulum: Structure & function including role in protein segregation; Golgi complex: Structure, biogenesis and functions including role in protein secretion.

UNIT-III

UNIT-IV
Extracellular Matrix: Composition, molecules that mediate cell adhesion, membranes receptors for extra cellular matrix, macromolecules, regulation of receptors expression and function. Signal transduction. Cancer: Carcinogenesis, agents promoting carcinogenesis, characteristics and molecular basis of cancer.

PRACTICAL

1. Study the effect of temperature and organic solvents on semi permeable membrane.
2. Demonstration of dialysis.
3. Study of plasmolysis and de-plasmolysis.
4. Cell fractionation and determination of enzyme activity in organelles using sprouted seed or any other suitable source.
5. Study of structure of any prokaryotic Eukaryotic cell.
6. Microtomy: Fixation, Block making, Section cutting, Double staining of animal tissues like liver, Oesphagus, Stomach, pancreas, Intestine, Kidney, Ovary, testes.

8. Preparation of Nuclear, mitochondria & cytoplasmic fractions.

GE-1: DEVELOPMENTAL BIOLOGY
(Credits-6: Theory-4, Practical-2)-Max. Marks: 100

THEORY (Each class 1 hr.): Marks-70

PRACTICAL (Each class 2 hrs.): Marks-30

Lectures: 60 (40 Theory + 20 Practical classes)

UNIT-I
Gametogenesis and Fertilization: Definition, scope & historical perspective of development Biology, Gametogenesis Spermatogenesis, Oogenesis Fertilization-Definition, mechanism, types of fertilization. Different types of eggs on the basis of yolk.

UNIT-II

UNIT-III
Embryonic Differentiation Differentiation: Cell commitment and determination- the epigenetic landscape: a model of determination and differentiation, control of differentiation at the level of genome, transcription and post-translation level Concept of embryonic induction: Primary, secondary & tertiary embryonic induction, Neural induction and induction of vertebrate lens.

UNIT-IV
Organogenesis Neurulation, notogenesis, development of vertebrate eye. Fate of different primary germlayers Development of behaviour: constancy & plasticity, Extra embryonic membranes, placenta in Mammals.

PRACTICAL

1. Identification of developmental stages of chick and frog embryo using permanent mounts

2. Preparation of a temporary stained mount of chick embryo

3. Study of developmental stages of Anopheles.

5. Study of different types of placenta.
SEMESTER-II

C-3: MAMMALIAN PHYSIOLOGY
(Credits-6: Theory-4, Practical-2)-Max. Marks: 100

THEORY (Each class 1 hr.): Marks-70
PRACTICAL (Each class 2 hrs.): Marks-30
Lectures: 60 (40 Theory + 20 Practical classes)

UNIT-I
Digestion: Mechanism of digestion & absorption of carbohydrates, proteins, Lipids and nucleic acids. Composition of bile, Saliva, pancreatic, gastric and intestinal juice
Respiration: Exchange of gases, Transport of O_2 and CO_2, Oxygen dissociation curve, chloride shift.

UNIT-II
Composition of blood, Plasma proteins & their role, blood cells, Haematopoesis, Mechanism of coagulation of Blood. Mechanism of Working of heart: Cardiac output, Cardiac cycle, Origin & conduction of heart beat.

UNIT-III
Muscle physiology and osmoregulation Structure of cardiac, smooth & skeletal muscle, threshold stimulus, All or None rule, single muscle twitch, muscle tone, isotonic and isometric contraction, Physical, chemical & electrical events of mechanism of muscle contraction. Excretion: Modes of excretion, Ornithine cycle, Mechanism of urine formation.

UNIT-IV

PRACTICAL

1. Finding the coagulation time of blood.
2. Determination of blood group.
3. Counting of mammalian RBCs.
4. Determination of TLC and DLC.
5. Demonstration of action of an enzyme.
UNIT-I
Nutritional classification of microorganism based on carbon, energy and electron sources, Metabolite Transport, Diffusion: Passive and facilitated, Primary active and secondary active transport, group translocation (phosphotransferase system), symport, antiport and uniport, electrogenic and electro transport, transport of Iron.

UNIT-II
Effect of the environment on microbial growth Temperature- temperature ranges for microbial growth, classification based on temperature ranges and adaptations, pH-classification based on pH ranges and adaptations, solutes and water activity, oxygen concentration, radiation and pressure. Chemolithotrophic metabolism, Physiological groups of aerobic and anaerobic chemolithotrophs. Hydrogenoxidizing bacteria and methanogens.

UNIT-III
Photosynthesis pigments, anoxygenic and oxygenic photosynthesis, concept of two photo systems, photosynthetic pigments photophosphorylation, physiology of bacterial photosynthesis: light reactions, cyclic and non-cyclic photophosphorylation. Carbon dioxide fixation, Calvin cycle, CAM plants, photorespiration, compensation point.

UNIT-IV
Nitrogen metabolism- inorganic & molecular nitrogen fixation, nitrate reduction and ammonium assimilation in plants. Growth and development: Development, phases of growth, growth curve, growth hormones (auxins, gibberlins, cytokinins, abscisic acid, ethylene) Physiological role and mode of action, seed dormancy and seed germination, concept of photoperiodism and vernalization.

PRACTICAL

1. Separation of photosynthetic pigment by paper chromatography
2. Demonstration of aerobic respiration
3. Preparation of root nodules from a leguminous plant.
4. To study and plot the growth curve of Ecoli using turbidometric method and to calculate specific growth rate and generation time.
5. To study and plot the growth curve of Aspergillus niger by radical growth measurements
6. To study the effect of pH on the growth of E.Coli.
7. To study the effect of temperature of Aspergillus niger by dry weight method.
8. Demonstration of the thermal death time and decimal reduction time of E.Coli.

GE-2: BIO-TECHNOLOGY & HUMAN WELFARE-1
(Credits-6: Theory-4, Practical-2)-Max. Marks: 100

THEORY (Each class 1 hr.): Marks-70
PRACTICAL (Each class 2 hrs.): Marks-30
Lectures: 60 (40 Theory + 20 Practical classes)

UNIT-I
Industry: protein engineering; enzyme and polysaccharide synthesis, activity and secretion, alcohol and antibiotic formation.

UNIT-II
Agriculture: N2 fixation: transfer of pest resistance genes to plants; interaction between plants and microbes; qualitative improvement of livestock.

UNIT-III
Environments: e.g. chlorinated and non-chlorinated organ pollutant degradation; degradation of hydrocarbons and agricultural wastes, stress management, development of biodegradable polymers such as PHB.

UNIT-IV
Forensic science: DNA fingerprinting; Solving violent crimes such as murder and rape; solving claims of paternity and theft etc. using various methods of DNA fingerprinting. Health: e.g. development of non-toxic therapeutic agents, recombinant live vaccines, gene therapy, diagnostics, monoclonal in E.coli, human genome project.

PRACTICAL
(Wherever wet lab experiments are not possible the principles and concepts can be demonstrated through any other material or medium including videos/virtual labs etc.)

1. Study of a plant part infected with a microbe.
2. To perform quantitative estimation of residual chlorine in water samples.
3. Isolation and analysis of DNA from minimal available biological samples.
4. Case studies on Bioethics (any two).
UNIT-I

UNIT-II
Non allelic interactions: Interaction producing new phenotype complementary genes, epistasis (dominant & recessive), duplicate genes and inhibitory genes. Chromosome and genomic organization: Structure and characteristics of bacterial and eukaryotic chromosome, chromosome morphology, concept of euchromatin and heterochromatin. packaging of DNA molecule into chromosomes, chromosome banding pattern, karyotype, giant chromosomes, one gene one polypeptide hypothesis, concept of cistron, exons, introns, genetic code, gene function.

UNIT-III
Chromosome and gene mutations: Definition and types of mutations, causes of mutations, Ames test for mutagenic agents, screening procedures for isolation of mutants and uses of mutants, variations in chromosomes structure-deletion, duplication, inversion and translocation (reciprocal and Robertsonian), position effects of gene expression, chromosomal aberrations in human beings, abnormalitiesAneuploidy and Euploidy. Sex determination and sex linkage: Mechanisms of sex determination, Environmental factors and sex determination, sex differentiation, Barr bodies, sex linked inheritance.

UNIT-IV
Genetic linkage, crossing over and chromosome mapping: Linkage and Recombination of genes in a chromosome crossing over, Cytological basis of crossing over, Molecular mechanism of crossing over. Extra chromosomal inheritance: Rules of extra nuclear inheritance, maternal effects, maternal inheritance, cytoplasmic inheritance, organelle heredity, genomic imprinting. Evolution and population genetics: In breeding and out breeding, Hardy Weinberg law (prediction, derivation), allelic and genotype frequencies, changes in allelic frequencies, systems of mating, evolutionary genetics, natural selection.
PRACTICAL

1. Permanent and temporary mount of mitosis.
2. Permanent and temporary mount of meiosis.
3. Karyotyping with the help of photographs.
4. Pedigree charts of some common characters like blood group, color blindness and PTC tasting.

C-6: GENERAL MICROBIOLOGY
(Credits-6: Theory-4, Practical-2)-Max. Marks: 100
THEORY (Each class 1 hr.): Marks-70
PRACTICAL (Each class 2 hrs.): Marks-30
Lectures: 60 (40 Theory + 20 Practical classes)

UNIT-I
Fundamentals, History and Evolution of Microbiology. Classification of microorganisms: Microbial taxonomy, criteria used including molecular approaches, Microbial phylogeny and current classification of bacteria. Microbial Diversity: Distribution and characterization Prokaryotic and Eukaryotic cells, Morphology and cell structure of major groups of microorganisms eg. Bacteria, Algae, Fungi, Protozoa and Unique features of viruses.

UNIT-II
Cultivation and Maintenance of microorganisms: Nutritional categories of micro-organisms, methods of isolation, Purification and preservation.

UNIT-III

UNIT-IV
Control of Microorganisms: By physical, chemical and chemotherapeutic Agents Water Microbiology: Bacterial pollutants of water, coliforms and non coliforms. Sewage composition and its disposal. Food Microbiology: Important microorganism in food Microbiology: Moulds, Yeasts, bacteria.

PRACTICAL

1. Isolation of bacteria & their biochemical characterization.
2. Staining methods: simple staining, Gram staining, spore staining, negative staining, hanging drop.
3. Preparation of media & sterilization methods, Methods of Isolation of bacteria from different sources.
4. Determination of bacterial cell size by micrometry.

5. Enumeration of microorganism - total & viable count.

C-7: CHEMISTRY-1

SEC-1: MOLECULAR DIAGNOSTICS
(Credits-6: Theory-4, Practical-2)-Max. Marks: 100
THEORY (Each class 1 hr.): Marks-70
PRACTICAL (Each class 2 hrs.): Marks-30
Lectures: 60 (40 Theory + 20 Practical classes)

UNIT-I

UNIT-II

UNIT-III

UNIT-IV
GLC, HPLC, Electron microscopy, flow cytometry and cell sorting. Transgenic animals.

PRACTICAL
(Wherever wet lab experiments are not possible the principles and concepts can be demonstrated through any other material or medium including videos/virtual labs etc.)

1. Kirby-Bauyer method (disc-diffusion method) to study antibiotic sensitivity of a bacterial culture

2. A kit-based detection of a microbial infection(Widal test)

4. Perform any one immuno diagnostic test(Typhoid, Malaria, Dengue)
UNIT-I

UNIT-II
Biosafety Introduction to biosafety and health hazards concerning biotechnology. Introduction to the concept of containment level and Good Laboratory Practices (GLP) and Good Manufacturing Practices(GMP).

UNIT-III

UNIT-IV
Morphology, pathogeneis, symptoms, laboratory diagnosis, preventive measures and chemotherapy caused by gram negative bacteria: *E.coli, N. gonorrhoea, N. meningitidis, P. aeruginosa, S. typhi, S. dysenteriae, Y. pestis, B. abortus, H. influenzae, V. cholerae, M. pneumoniae, T. pallidum M. pneumoniae, Rickettsiaceae, Chlamydiae.*

PRACTICAL

1. Identification of pathogenic bacteria(any two) based on cultural, morphological and biochemical characteristics.

2. Isolation of lymphocytes for culturing.

3. Case study on handling and disposal of radioactive waste

4. Calculation of BOD of water sample.
UNIT-I
DNA structure and replication: DNA as genetic material, Structure of DNA, Types of DNA, Replication of DNA in prokaryotes and eukaryotes: Semiconservative nature of DNA replication, Bi-directional replication, DNA polymerases, The replication complex: Pre-primming proteins, primosome, replisome, Rolling circle replication, Unique aspects of eukaryotic chromosome replication, Fidelity of replication.

UNIT-II
DNA damage, repair and homologous recombination: DNA damage and repair: causes and types of DNA damage, mechanism of DNA repair: Homologous recombination: models and mechanism.

UNIT-III
Transcription and RNA processing: RNA structure and types of RNA, Transcription in prokaryotes: Prokaryotic RNA polymerase, role of sigma factor, promoter, Initiation, elongation and termination of RNA chains Transcription in eukaryotes: Eukaryotic RNA polymerases, transcription factors, promoters, enhancers, mechanism of transcription initiation, promoter clearance and elongation RNA splicing and processing: processing of pre-mRNA: 5 cap formation, polyadenylation, splicing, rRNA and tRNA splicing.

UNIT-IV
Regulation of gene expression and translation: Regulation of gene expression in prokaryotes: Operon concept (inducible and repressible system), Genetic code and its characteristics, Prokaryotic and eukaryotic translation: ribosome structure and assembly, Charging of tRNA, aminoacyl tRNA synthetases, Mechanism of initiation, elongation and termination of polypeptides, Post-translational modifications of proteins.

PRACTICAL
1. Preparation of solutions for Molecular Biology experiments.
2. Isolation of chromosomal DNA from bacterial cells.
3. Isolation of Plasmid DNA by alkaline lysis method
4. Agarose gel electrophoresis of genomic DNA & plasmid DN.
UNIT-I
Immune Response - An overview, components of mammalian immune system, molecular structure of Immuno-globulins or Antibodies, Humoral & Cellular immune responses, Tlymphocytes & immune response (cytotoxic T-cell, helper T-cell, suppressor T-cells), T-cell receptors, genome rearrangements during B-lymphocyte differentiation, Antibody affinity maturation class switching, assembly of T-cell receptor genes by somatic recombination.

UNIT-II
Regulation of immunoglobulin gene expression clonal selection theory, allotypes & idiotypes, allelic exclusion, immunologic memory.

UNIT-III
Major Histocompatibility complexes class I & class II MHC antigens, antigen processing and presentation, Immunity to infection immunity to different organisms, pathogen defense strategies, avoidance of recognition. Autoimmune diseases, Immunodeficiency diseases, AIDS.

UNIT-IV
Vaccines & Vaccination adjuvants, cytokines, DNA vaccines, recombinant vaccines, bacterial vaccines, viral vaccines, vaccines to other infectious agents, passive & active immunization. Introduction to immunodiagnostics RIA, ELISA.

PRACTICAL
1. Differential leucocytes count.
2. Total leucocytes count.
3. Total RBC count.
UNIT-I
INTRODUCTION: Meaning, Needs and Importance of Entrepreneurship, Promotion of entrepreneurship, Factors influencing entrepreneurship, Features of a successful Entrepreneurship.

UNIT-II
ESTABLISHING AN ENTERPRISE: Forms of Business Organization, Project Identification, Selection of the product, Project formulation, Assessment of project feasibility.

UNIT-III
FINANCING THE ENTERPRISE: Importance of finance/loans and repayments, Characteristics of Business finance, Fixed capital management: Sources of fixed capital, working capital its sources and how to move for loans, Inventory direct and indirect raw materials and its management.

UNIT-IV
MARKETING MANAGEMENT: Meaning and Importance, Marketing-mix, product management Product line, Product mix, stages of product like cycle, marketing Research and Importance of survey, Physical Distribution and Stock Management.

UNIT-IV
ENTREPRENEURSHIP AND INTERNATIONAL BUSINESS: Meaning of International business, Selection of a product, Selection of a market for international business, Export financing, Institutional support for exports.

PRACTICAL
Project Report on a selected product should be prepared and submitted.

SEMESTER-V
C-11: INDUSTRIAL FERMENTATION
(Credits-6: Theory-4, Practical-2)-Max. Marks: 100
THEORY (Each class 1 hr.): Marks-70
PRACTICAL (Each class 2 hrs.): Marks-30
Lectures: 60 (40 Theory + 20 Practical classes)

UNIT-I
Production of industrial chemicals, biochemicals and chemotherapeutic products. Propionic acid, butyric acid, $2 - 3$ butanediol, gluconic acid, itaconic acid, Biofuels: Biogas, Ethanol, butanol, hydrogen, biodiesel, microbial electricity, starch conversion processes; Microbial polysaccharides; Microbial insecticides; microbial flavours and fragrances, newer antibiotics, anti cancer agents, amino acids.
UNIT-II

UNIT-III
Purification & characterization of proteins, Upstream and downstream processing. Distribution of microbial cells, centrifugation, filtration of fermentation broth, ultra centrifugation, liquid extraction, ion-exchange recovery of biological products. Experimental model for design of fermentation systems, Anaerobic fermentations.

UNIT-IV
Rate equations for enzyme kinetics, simple and complex reactions. Inhibition kinetics; effect of pH and temperature on rate of enzyme reactions. Mathematical derivation of growth kinetics, mathematical derivations of batch and continuous culture operations; single stage CSTR; mass transfer in aerobic fermentation; resistances encountered; overall mass transfer co-efficient (Ka) determination, factors depending on scale up principle and different methods of scaling up. Metabolic engineering of antibiotic biosynthetic pathways.

PRACTICAL

1. Comparative analysis of design of a batch and continuous fermenter.
2. Calculation of Mathematical derivation of growth kinetics.
3. Solvent extraction & analysis of a metabolite from a bacterial culture.
4. Perform an enzyme assay demonstrating its hydrolytic activity (protease/peptidase/glucosidase etc.)

C-12: RECOMBINANT DNA TECHNOLOGY
(Credits-6: Theory-4, Practical-2)-Max. Marks: 100
THEORY (Each class 1 hr.): Marks-70
PRACTICAL (Each class 2 hrs.): Marks-30
Lectures: 60 (40 Theory + 20 Practical classes)

UNIT-I
Molecular tools and applications- restriction enzymes, ligases, polymerases, alkaline phosphatase. Gene Recombination and Gene transfer: Transformation, Episomes, Plasmids and other cloning vectors (Bacteriophage-derived vectors, artificial chromosomes), Microinjection, Electroporation, Ultrasonication, Principle and applications of Polymerase chain reaction (PCR), primer-design, and RT- (Reverse transcription) PCR.

UNIT-II
Restriction and modification system, restriction mapping. Southern and Northern hybridization.
Preparation and comparison of Genomic and cDNA library, screening of recombinants, reverse transcription, Genome mapping, Applications of Genetic Engineering in animals: Production and applications of transgenic mice, Therapeutic products produced by genetic engineering blood proteins, human hormones, immune modulators and vaccines (one example each).

UNIT-III
Random and site-directed mutagenesis: Primer extension and PCR based methods of site directed mutagenesis, Random mutagenesis, Protein engineering concepts and examples (any two).

UNIT-IV
Genetic engineering in plants: Use of Agrobacterium tumefaciens and A. rhizogenes, Ti plasmids, Strategies for gene transfer to plant cells, Direct DNA transfer to plants, Gene targeting in plants.

PRACTICAL

1. Isolation of chromosomal DNA from plant cells
2. Isolation of chromosomal DNA from E.coli
3. Qualitative and quantitative analysis of DNA using spectrophotometer
4. Plasmid DNA isolation
5. Restriction digestion of DNA
6. Demonstration of PCR

DSE-1: ANIMAL DIVERSITY-I
(Credits-6: Theory-4, Practical-2)-Max. Marks: 100
THEORY (Each class 1 hr.): Marks-70
PRACTICAL (Each class 2 hrs.): Marks-30
Lectures: 60 (40 Theory + 20 Practical classes)

UNIT-I
(a) Outline of classification of Non- Chordates upto subclasses. Coelomata, Acoelomata, Symmetries, Deutrostromes, Protostomes.
(b) Protozoa: Locomotion, Reproduction, evolution of Sex, General features of Paramoecium and Plasmodium. Pathogenic protozoans.
(c) Porifera: General characters, outline of Classification; skeleton, Canal System.

UNIT-II
(a) Coelenterata: General Characters, Outline of classifications Polymorphism, Various types of stinging cells; Metagenesis, coral reefs and their formation.
(b) Platyhelminthes- General Characters; Outline of classification; Pathogenic flatworms: Parasitic adaptations.
(c) Aschelminthes: General features, Outline of classification, Pathogenic roundworms and their vectors in relation to man: Parasite adaptation.
UNIT-III
(b) Arthropoda: General Features, Outline of Classification; Larval forms of crustacean, Respiration in Arthropoda; Metamorphosis in insects; Social insects; Insect vectors of diseases; Apiculture, Sericulture.

UNIT-IV
(a) Mollusca: general features, Outline of classification, Shell Diversity; Torsion in gastropoda.
(b) Echinodermata: General features, Outline of Classification Larval forms.
(c) Hemichordata: Phylogeny: Affinities of Balanoglossus.

PRACTICAL
1. Identification and Classification of any these of the following:
 Arthropoda: Julus, Scolopendra, Peripatus, Carcinus, Limulus, Lepisma, Dragonfly, Musca, Acheta.
 Mollusca: Pila, Unio, Mytilus, Loligo, Sepia, Octopus, Solen.

2. Identification of slides with two points of identification.
 Amoebo, Paramoecium, Ceratium, Plasmodium, Opalina, L.S. Sponge, Spicules of sponges, L.S. Hydra, Obelia, Bougainvillia, Larvae of Fasciola, Seta of Earthworm, Radula

3. Ecological Note On any of the specimens in Exercise No. 1 Models of dissection of Earthworm, Cockroach.
 Earthworm: Digestive, Nervous System,
 Cockroach: Digestive Reproductive, Nervous System.

DSE-2: PLANT DIVERSITY-I
(Credits-6: Theory-4, Practical-2)-Max. Marks: 100
 THEORY (Each class 1 hr.): Marks-70
 PRACTICAL (Each class 2 hrs.): Marks-30
 Lectures: 60 (40 Theory + 20 Practical classes)

UNIT-I
Algae:
General character, classification & economic importance. Life histories of algae belonging to various classes:
Chlorophyceae Volvox, Oedogonium, Xantho phyceae Vaucheria, Phaeophyceae Ectocarpus, Rhodophyceae- Polysiphonia
UNIT-II
Fungi:
General characters, classification & economic importance. Life histories of Fungi:
Mastigomycontina-Phytophthora, Zygomycontina-Mucor, Ascomycotina-Saccharomyces, Basidomycontina-Agaricus, Deutromycotina-Colletotrichum.

UNIT-III
Lichens:
Classification, general structure, reproduction and economic importance. Plant diseases: 4 of 36 Casual organism, symptoms and control of following plant diseases. Rust & Smut of Wheat, White rust of Crucifers, Late blight of Potato, Red rot of Sugarcane, Citrus Canker.

UNIT-IV
Bryophytes:
General characters, classification & economic impotance. Life histories of following: Marchantia, Funaria.

PRACTICAL
1. Comparative study of thallus and reproductive organs of various algae mentioned in theory.
2. Comparative study of vegetative and reproductive parts of various fungi mentioned in theory.
3. Study and section cutting and lectophenol mount of plant disease materials studied in theory.
4. Study of various types of lichens.
5. Study of external features & anatomy of vegetative and reproductive parts of Marchantia and Funaria
6. Collection of algae, fungi, plant diseases materials and bryophytes available locally.

SEMESTER-VI
C-13: BIO-ANALYTICAL TOOLS
(Credits-6: Theory-4, Practical-2)-Max. Marks: 100
THEORY (Each class 1 hr.): Marks-70
PRACTICAL (Each class 2 hrs.): Marks-30
Lectures: 60 (40 Theory + 20 Practical classes)

UNIT-I
Simple microscopy, phase contrast microscopy, florescence and electron microscopy (TEM and SEM), pH meter, absorption and emission spectroscopy

UNIT-II
Principle and law of absorption fluorimetry, colorimetry, spectrophotometry (visible, UV, infrared), centrifugation, cell fractionation techniques, isolation of sub-cellular organelles and particles.
UNIT-III
Introduction to the principle of chromatography. Paper chromatography, thin layer chromatography, column chromatography: silica and gel filtration, affinity and ion exchange chromatography, gas chromatography, HPLC.

UNIT-IV
Introduction to electrophoresis, polyacrylamide gel (native and SDS-PAGE), agarose-gel electrophoresis, immuno-electrophoresis, isoelectric focusing, Western blotting. Introduction to Biosensors and Nanotechnology and their applications.

PRACTICAL

1. Native gel electrophoresis of proteins
2. SDS-polyacrylamide slab gel electrophoresis of proteins under reducing conditions.
3. Preparation of the sub-cellular fractions of rat liver cells.
4. Preparation of protoplasts from leaves.
5. Separation of amino acids by paper chromatography.
6. To identify lipids in a given sample by TLC.
7. To verify the validity of Beers law and determine the molar extinction coefficient of NADH.

C-14: GENOMICS & PROTEOMICS
(Credits-6: Theory-4, Practical-2)-Max. Marks: 100
THEORY (Each class 1 hr.): Marks-70
PRACTICAL (Each class 2 hrs.): Marks-30
Lectures: 60 (40 Theory + 20 Practical classes)

UNIT-I
Introduction to Genomics, DNA sequencing methods manual & automated: Maxam & Gilbert and Sangers method. Pyrosequencing, Genome Sequencing: Shotgun & Hierarchical (clone contig) methods, Computer tools for sequencing projects: Genome sequence assembly software.

UNIT-II
Managing and Distributing Genome Data: Web based servers and softwares for genome analysis: ENSEMBL, VISTA, UCSC Genome Browser, NCBI genome. Selected Model Organisms' Genomes and Databases.

UNIT-III
Introduction to protein structure, Chemical properties of proteins. Physical interactions that determine the property of proteins. Short-range interactions, electrostatic forces, van der waal interactions, hydrogen bonds, Hydrophobic interactions. Determination of sizes (Sedimentation analysis, gel filtration, SDS-PAGE); Native PAGE, Determination of covalent structures Edman degradation.
UNIT-IV

PRACTICAL
1. Use of SNP databases at NCBI and other sites
2. Detection of Open Reading Frames using ORF Finder
3. Proteomics 2D PAGE database
4. Softwares for Protein localization.
5. Native PAGE
6. SDS-PAGE

DSE-3: ANIMAL DIVERSITY-II
(Credits-6: Theory-4, Practical-2)-Max. Marks: 100
THEORY (Each class 1 hr.): Marks-70
PRACTICAL (Each class 2 hrs.): Marks-30
Lectures: 60 (40 Theory + 20 Practical classes)

UNIT-I
Proto-chordates, Pisces and Ambhibia
Proto-chordates: Outline of classification, General features and important characters of Herdmania, Branchiostoma
Origin of Chordates
Pisces: Migration in Pisces, Outline of classification
Amphibia: Classification, Origin, Parental care, Paedogenesis.

UNIT-II
Reptilia, Aves and Mammalia (15 Periods)
Reptelia: Classification, Origin
Aves: Classification, Origin, flight- adaptations, migration
Mammalia: Classification, Origin, dentition.

UNIT-III
Comparative anatomy of vertebrates I (15 Periods)
Comparative anatomy of various systems of vertebrates: Integumentary, digestive respiratory systems.

UNIT-IV
Comparative anatomy of vertebrates II (15 Periods)
Comparative Anatomy of vertebrates Heart, Aortic arches, Kidney & urinogenital system, Brain, Eye, Ear.
Autonomic Nervous system in Mammals.
PRACTICAL

1. Identification & Classification upto order of the following: Proto-chordata: Salpa, Doliolum, Herdmania, Branchiostoma
 Cyclostomata: Myxine, Petromyzon
 Chondrichthyes: Scoliodon, Zygnea, Pristis, Trygon, Raja, Chimaera
 Ostiechthyes: Labeo, Mystus, Catla, Hippocampus, Anabas, Echeneis, Lophius, Polypeterus
 Amphibia: Rana, Hyla, Amblystoma, Necturus, Proteus
 Reptiles: Hemidactylus, Calotes, Draco, Phrynosoma, Naja Vipera, Bungarus Aves: Columba, Alcedo, Passer
 Mammalia: Ornithorhynchus, Macropus, Didelphes, Dasypus

2. An Ecological Note on any one of the specimens in Experiment 1

3. Identification of the following slides Mammalian Histology: Liver, Lung, Intestine, Kidney, Ovary, Testes
 Slides of Salpa, Doliolum, Spicules of Herdmania, Tadpole of Frog

4. Preparation of a permanent mount of Salpa, Placoid scales, spicules of Herdmania, Pharynax of Amphioxus, Tadpole Larva of frog

5. Identification of endoskeletons of frog and rabbit.

DSE-4: PLANT DIVERSITY-II
(Credits-6: Theory-4, Practical-2)-Max. Marks: 100
THEORY (Each class 1 hr.): Marks-70
PRACTICAL (Each class 2 hrs.): Marks-30
Lectures: 60 (40 Theory + 20 Practical classes)

UNIT-I
Pteridophytes
General characters of pteridophytes, affinities with bryophytes & gymnosperms, classification, economic importance, study of life histories of fossil Pteridophytes Rhynia.

UNIT-II
Pteridophytes: Type studies
Life histories of Selaginella-(Heterospory and seed habit), Equisetum, Pteris, Lycopodium.

UNIT-III
Gymnosperms
General characters, classification, geological time scale, theories of fossil formation, types of fossils, fossil gymnosperms-Williamsonia & Glossopteris, telome and stele concept.

UNIT-IV
Gymnosperms: Type studies Life histories of Cycas & Pinus, economic importance of gymnosperms.

PRACTICAL
1. Examination of morphology and anatomy of vegetative and reproductive parts of *Selaginella, Equisetum & Pteris*.

2. Examination of morphology and anatomy of vegetative & reproductive parts of *Cycas & Pinus*.

3. Plant collection (pteridophytes & gymnosperms)

OR

PROJECT WORK

Marks:100
BIO-TECHNOLOGY(PASS)

SEMESTER-I

C-1: BIOCHEMISTRY & METABOLISM
(Credits-6: Theory-4, Practical-2)-Max. Marks: 100

THEORY (Each class 1 hr.): Marks-70
PRACTICAL (Each class 2 hrs.): Marks-30

Lectures: 60 (40 Theory + 20 Practical classes)

UNIT-I

UNIT-II

UNIT-III
Enzymes: Nomenclature and classification of Enzymes, Holoenzyme, apoenzyme, Cofactors, coenzyme, prosthetic groups, Enzyme kinetics and activity, Specific activity.

UNIT-IV
Carbohydrates Metabolism: Reactions, energetic and regulation. Glycolysis: Fate of pyruvate under aerobic and anerobic conditions. Pentose phosphate pathway and its significance, Gluconeogenesis, Glycogenolysis and glycogen synthesis, TCA cycle.

PRACTICAL

1. To study activities of any enzyme under optimum conditions.
2. To study the effect of pH, temperature on the activity of salivary amylase enzyme.
4. Determination of pH optima, temperature optima, Km value, Vmax value, Effect of inhibitor (Inorganic phosphate) on the enzyme activity.
5. Estimation of blood by glucose oxidase method.
6. Preparation of buffers.
7. Separation of Amino acids by paper chromatography.
8. Qualitative tests for Carbohydrates, lipids and proteins.

C-2: CELL BIOLOGY
(Credits-6: Theory-4, Practical-2)-Max. Marks: 100
THEORY (Each class 1 hr.): Marks-70
PRACTICAL (Each class 2 hrs.): Marks-30
Lectures: 60 (40 Theory + 20 Practical classes)

UNIT-I

UNIT-II
Cytoskeleton and cell motility: Structure and function of microtubules, Microfilaments, Intermediate filaments, Endoplasmic reticulum: Structure & function including role in protein segregation; Golgi complex: Structure, biogenesis and functions including role in protein secretion.

UNIT-III

UNIT-IV
Extracellular Matrix: Composition, molecules that mediate cell adhesion, membranes receptors for extra cellular matrix, macromolecules, Cancer: Carcinogenesis, agents promoting carcinogenesis and their characteristics.

PRACTICAL

1. Study the effect of temperature and organic solvents on semi permeable membrane.

2. Demonstration of dialysis.

3. Study of plasmolysis and de-plasmolysis.

4. Cell fractionation and determination of enzyme activity in organelles using sprouted seed or any other suitable source.

5. Study of structure of any prokaryotic Eukaryotic cell.

6. Microtomy: Fixation, Block making, Section cutting, Double staining of animal tissues like liver, Oesphagus, Stomach, pancreas, Intestine, Kidney, Ovary, testes.

UNIT-I
Gametogenesis and Fertilization Definition, scope & historical perspective of development Biology, Gametogenesis Spermatogenesis, Oogenesis Fertilization - Definition, mechanism, types of fertilization. Different types of eggs on the basis of yolk.

UNIT-II

UNIT-III
Embryonic Differentiation Differentiation: Cell commitment and determination- the epigenetic landscape: a model of determination and differentiation, control of differentiation at the level of genome, transcription and post-translation level. Concept of embryonic induction: Primary, secondary & tertiary embryonic induction, Neural induction and induction of vertebrate lens.

UNIT-IV
Organogenesis Neurulation, notogenesis, development of vertebrate eye. Fate of different primary germlayers Development of behaviour: constancy & plasticity, Extra embryonic membranes, placenta in Mammals.

Practical: Marks-20
1. Identification of developmental stages of chick and frog embryo using permanent mounts
2. Preparation of a temporary stained mount of chick embryo
3. Study of developmental stages of Anopheles.
5. Study of different types of placenta.

SEMESTER-II
C-3: MAMMALIAN PHYSIOLOGY
(Credits-6: Theory-4, Practical-2)-Max. Marks: 100
THEORY (Each class 1 hr.): Marks-70
PRACTICAL (Each class 2 hrs.): Marks-30
Lectures: 60 (40 Theory + 20 Practical classes)
UNIT-I
Digestion: Mechanism of digestion & absorption of carbohydrates, proteins, lipids and nucleic acids.
Respiration: Exchange of gases, transport of \(O_2\) and \(CO_2\).

UNIT-II
Composition of blood, Plasma proteins & their role, blood cells, haematopoiesis, Mechanism of
Working of heart: Cardiac output, Cardiac cycle.

UNIT-III
Muscle physiology and osmoregulation Structure of cardiac, smooth & skeletal muscle, thresherd
stimulus,Physical, chemical & electrical events of mechanism of muscle contraction. Excretion :
Modes of excretion, Ornithine cycle, Mechanism of urine formation.

UNIT-IV
Nervous and endocrine coordination Mechanism of generation & propagation of nerve impulse, struc-
ture of synapase, synaptic conduction, Neurotransmitters. Mechanism of action of hormones, Different
endocrine glands- Hypothalamus, pituitary, pineal, thymus, thyroid, parathyroid and adrenals.

PRACTICAL
1. Finding the coagulation time of blood
2. Determination of blood group
3. Counting of mammalian RBCs
4. Determination of TLC and DLC
5. Demonstration of action of an enzyme
6. Determination of Haemoglobin (% Hb in blood)

C-4: MICROBIAL & PLANT PHYSIOLOGY
(Credits-6: Theory-4, Practical-2)-Max. Marks: 100
THEORY (Each class 1 hr.): Marks-70
PRACTICAL (Each class 2 hrs.): Marks-30
Lectures: 60 (40 Theory + 20 Practical classes)

UNIT-I
Nutritional classification of microorganism based on carbon, energy and electron sources, Metabolite
Transport, Diffusion: active transport, group translocation (phosphotransferase system), transport
of Iron.

UNIT-II
Effect of the environment on microbial growth Temperature- temperature ranges for microbial
growth, classification based on temperature ranges, pH-classification based on pH ranges, solutes
and water activity, oxygen concentration, Chemolithotrophic metabolism, methanogens.
UNIT-III
Photosynthesis pigments, anoxygenic and oxygenic photosynthesis, concept of two photo systems, photosynthetic pigments photophosphorylation, Carbon dioxide fixation, Calvin cycle.

UNIT-IV
Nitrogen metabolism- inorganic & molecular nitrogen fixation, nitrate reduction and ammonium assimilation in plants, Growth and development: Development, phases of growth, growth curve, growth hormones (auxins, gibberlins, cytokinins, abscisic acid, ethylene)

PRACTICAL
1. Separation of photosynthetic pigment by paper chromatography
2. Demonstration of aerobic respiration
3. Preparation of root nodules from a leguminous plant.
4. To study and plot the growth curve of Ecoli using turbidometric method and to calculate specific growth rate and generation time.
5. To study and plot the growth curve of Aspergillus niger by radical growth measurements
6. To study the effect of pH on the growth of E.Coli.
7. To study the effect of temperature of Aspergillus niger by dry weight method.
8. Demonstration of the termal death time and ecimal reduction time of E.Coli.

GE 2: BIOTECHNOLOGY & HUMAN WELFARE-1
(Theory: 30 Marks, Practical: 20)

UNIT-I
Industry: protein engineering; enzyme and polysaccharide synthesis, activity and secretion, alcohol and antibiotic formation.

UNIT-II
Agriculture: N2 fixation: transfer of pest resistance genes to plants; interaction between plants and microbes; qualitative improvement of livestock.

UNIT-III
Environments: e.g. chlorinated and non-chlorinated pollutant degradation; degradation of hydrocarbons and agricultural wastes, stress management, development of biodegradable polymers such as PHB.

UNIT-IV
Forensic science: DNA fingerprinting; Solving violent crimes such as murder and rape; solving claims of paternity and theft etc. using various methods of DNA fingerprinting. Health: e.g. development of non-toxic therapeutic agents, recombinant live vaccines, gene therapy, diagnostics, monoclonal in E.coli, human genome project.

PRACTICAL

(Wherever wet lab experiments are not possible the principles and concepts can be demonstrated through any other material or medium including videos/virtual labs etc.)

1. Study of a plant part infected with a microbe
2. To perform quantitative estimation of residual chlorine in water samples
3. Isolation and analysis of DNA from minimal available biological samples
4. Case studies on Bioethics (any two).

SEMESTER-III

C-5: GENETICS

(Credits-6: Theory-4, Practical-2)-Max. Marks: 100
THEORY (Each class 1 hr.): Marks-70
PRACTICAL (Each class 2 hrs.): Marks-30
Lectures: 60 (40 Theory + 20 Practical classes)

UNIT-I

UNIT-II

UNIT-III
Chromosome and gene mutations: Definition and types of mutations, causes of mutations, Ames test for mutagenic agents, screening procedures for isolation of mutants and uses of mutants, variations in chromosomes structure - deletion, duplication, inversion and translocation (reciprocal and robertsonian, chromosomal aberrations in human beings, abnormalities Aneuploidy and Euploidy.
Sex determination and sex linkage: Mechanisms of sex determination, environmental factors and sex determination, sex differentiation, Barr bodies, sex linked inheritance.

UNIT-IV
Genetic linkage, crossing over and chromosome mapping: Linkage and Recombination of genes in a chromosome crossing over, Molecular mechanism of crossing over. Extra chromosomal inheritance: Rules of extra nuclear inheritance, maternal effects, maternal inheritance, Evolution and population genetics: In breeding and out breeding, Hardy Weinberg law (prediction, derivation), allelic and genotype frequencies, changes in allelic frequencies, systems of mating, evolutionary genetics, natural selection.

PRACTICAL
1. Permanent and temporary mount of mitosis.
2. Permanent and temporary mount of meiosis.
3. Karyotyping with the help of photographs
4. Pedigree charts of some common characters like blood group, color blindness and PTC tasting.

C-6: GENERAL MICROBIOLOGY
(Credits-6: Theory-4, Practical-2)-Max. Marks: 100
THEORY (Each class 1 hr.): Marks-70
PRACTICAL (Each class 2 hrs.): Marks-30
Lectures: 60 (40 Theory + 20 Practical classes)

UNIT-I
Fundamentals, History and Evolution of Microbiology. Classification of microorganisms: Microbial phylogeny and current classification of bacteria, Microbial Diversity: Distribution and characterization Prokaryotic and Eukaryotic cells, Morphology and cell structure of major groups of microorganisms eg. Bacteria, Algae, Fungi, Protozoa and Unique features of viruses.

UNIT-II
Cultivation and Maintenance of microorganisms: Nutritional categories of micro-organisms, methods of isolation, Purification and preservation.

UNIT-III

UNIT-IV
Control of Microorganisms: By physical, chemical and chemotherapeutic agents, aquatic Microbiology: Bacterial pollutants of water, Food Microbiology: Important microorganism in food Microbiology: moulds, yeasts, bacteria.
PRACTICAL

1. Isolation of bacteria & their biochemical characterization.
2. Staining methods: simple staining, Gram staining, spore staining, negative staining, hanging drop.
3. Preparation of media & sterilization methods, Methods of Isolation of bacteria from different sources.
4. Determination of bacterial cell size by micrometry.
5. Enumeration of microorganism - total & viable count.

C-7: CHEMISTRY-1

SEC-1: MOLECULAR DIAGNOSTICS
(THEORY: Marks-30, PRACTICAL: Marks-20)

UNIT-I
Enzyme Immunoassays: Comparison of enzymes available for enzyme immunoassays, conjugation of enzymes. Solid phases used in enzyme immunoassays. Homogeneous and heterogeneous enzyme immunoassays. Enzyme immuno histochemical techniques, Applications of enzyme immunoassays in diagnostic microbiology

UNIT-II

UNIT-III

UNIT-IV
GLC, HPLC, Electron microscopy, flowcytometry and cell sorting. Transgenic animals.

PRACTICAL

(Wherever wet lab experiments are not possible the principles and concepts can be demonstrated through any other material or medium including videos/virtual labs etc.)

1. Kirby-Bauyer method (disc-diffusion method) to study antibiotic sensitivity of a bacterial culture
2. A kit-based detection of a microbial infection (Widal test)

4. Perform any one immuno diagnostic test (Typhoid, Malaria, Dengue).

GE-3: BIOTECHNOLOGY, BIOSAFETY AND HUMAN WELFARE-I or II
(Bioethics and Biosafety)
(THEORY: Marks-30, PRACTICAL: Marks-20)

UNIT-I
Bioremediation of soil & water contaminated with oil spills, heavy metals and detergents. Degradation of lignin and cellulose using microbes. Phyto-remediation. Degradation of pesticides and other toxic chemicals by micro-organisms- degradation aromatic and chlorinates hydrocarbons and petroleum products

UNIT-II
Biosafety Introduction to biosafety and health hazards concerning biotechnology. Introduction to the concept of containment level and Good Laboratory Practices (GLP) and Good Manufacturing Practices (GMP).

UNIT-III

UNIT-IV

PRACTICAL

1. Identification of pathogenic bacteria (any two) based on cultural, morphological and biochemical characteristics.

2. Isolation of lymphocytes for culturing

3. Case study on handling and disposal of radioactive waste

4. Calculation of BOD of water sample.

SEMESTER-IV

C-8: MOLECULAR BIOLOGY
(Credits-6: Theory-4, Practical-2)-Max. Marks: 100
THEORY (Each class 1 hr.): Marks-70
PRACTICAL (Each class 2 hrs.): Marks-30
Lectures: 60 (40 Theory + 20 Practical classes)
UNIT-I
DNA structure and replication DNA as genetic material, Structure of DNA, Types of DNA, Replication of DNA in prokaryotes and eukaryotes: Semiconservative nature of DNA replication, Bidirectional replication, DNA polymerases, Fidelity of replication.

UNIT-II
DNA damage, repair and homologous recombination DNA damage and repair: causes and types of DNA damage, mechanism of DNA repair: Homologous recombination: models and mechanism.

UNIT-III
Transcription and RNA processing RNA structure and types of RNA, Transcription in prokaryotes: Prokaryotic RNA polymerase, role of sigma factor, promoter, Initiation, elongation and termination of RNA chains Transcription in eukaryotes: Eukaryotic RNA polymerases, transcription factors, promoters, enhancers, mechanism of transcription initiation, promoter clearance and elongation RNA splicing and processing: processing of pre-mRNA: 5 cap formation, polyadenylation, splicing, rRNA and tRNA splicing.

UNIT-IV
Regulation of gene expression and translation Regulation of gene expression in prokaryotes: Operon concept (inducible and repressible system), Genetic code and its characteristics, Prokaryotic and eukaryotic translation: ribosome structure and assembly, Charging of tRNA, aminoacyl tRNA synthetases, Mechanism of initiation, elongation and termination of polypeptides, Posttranslational modifications of proteins.

PRACTICAL
1. Preparation of solutions for Molecular Biology experiments.
2. Isolation of chromosomal DNA from bacterial cells.
3. Isolation of Plasmid DNA by alkaline lysis method
4. Agarose gel electrophoresis of genomic DNA & plasmid DN.

C-9: IMMUNOLOGY
(Credits-6: Theory-4, Practical-2)-Max. Marks: 100
THEORY (Each class 1 hr.): Marks-70
PRACTICAL (Each class 2 hrs.): Marks-30
Lectures: 60 (40 Theory + 20 Practical classes)

UNIT-I
Phylogeny of Immune system, Innate and acquired Immunity, Clonal nature of Immune response. An overview of components (cells, tissues and organs) of mammalian immune system.

UNIT-II
Molecular structure of Immuno-globulins or Antibodies, Humoral & Cellular immune responses,
T-lymphocytes & immune response (cytotoxic T-cell, helper T-cell, suppressor T-cells), T-cell receptors, genome rearrangements during B-lymphocyte differentiation.

UNIT-III
Major Histocompatibility complexes class I & class II MHC antigens, antigen processing and presentation, Immunity to infection immunity to different organisms, pathogen defense strategies, avoidance of recognition. Autoimmune diseases, Immunodeficiency diseases, AIDS.

UNIT-IV
Vaccines & Vaccination adjuvants, cytokines, DNA vaccines, recombinant vaccines, bacterial vaccines, viral vaccines, vaccines to other infectious agents, passive & active immunization. Introduction to immunodiagnostics RIA, ELISA.

PRACTICAL

1. Differential leucocytes count.
2. Total leucocytes count.
3. Total RBC count.

C-10: CHEMISTRY-2
SEC-2: ENGLISH: Marks-50
GE-4: ENTREPRENEURSHIP DEVELOPMENT
(THEORY: Marks-30, PRACTICAL: Marks-20)

UNIT-I
INTRODUCTION: Meaning, Needs and Importance of Entrepreneurship, Promotion of entrepreneurship, Factors influencing entrepreneurship, Features of a successful Entrepreneurship.

UNIT-II
ESTABLISHING AN ENTERPRISE: Forms of Business Organization, Project Identification, Selection of the product, Project formulation, Assessment of project feasibility.

UNIT-III
FINANCING THE ENTERPRISE: Importance of finance / loans and repayments, Characteristics of Business finance, Fixed capital management: Sources of fixed capital, working capital its sources and how to move for loans, Inventory direct and indirect raw materials and its management.

UNIT-IV
MARKETING MANAGEMENT: Meaning and Importance, Marketing-mix, product management
Product line, Product mix, stages of product like cycle, marketing Research and Importance of survey, Physical Distribution and Stock Management.

UNIT-V
ENTREPRENEURSHIP AND INTERNATIONAL BUSINESS: Meaning of International business, Selection of a product, Selection of a market for international business, Export financing, Institutional support for exports.

PRACTICAL
Project Report on a selected product should be prepared and submitted.

SEMESTER-V

C-11: INDUSTRIAL FERMENTATION
(Credits-6: Theory-4, Practical-2)-Max. Marks: 100
THEORY (Each class 1 hr.): Marks-70
PRACTICAL (Each class 2 hrs.): Marks-30
Lectures: 60 (40 Theory + 20 Practical classes)

UNIT-I
Production of industrial chemicals, biochemicals and chemotherapeutic products. Propionic acid, butyric acid, $2-3$ butanediol, gluconic acid, itaconic acid, Biofuels: Biogas, Ethanol, butanol, hydrogen, biodiesel, starch conversion processes; Microbial polysaccharides; Microbial insecticides; newer antibiotics, anti cancer agents, amino acids.

UNIT-II

UNIT-III
Purification & characterization of proteins, Upstream and downstream processing. Distribution of microbial cells, centrifugation, ultra centrifugation, liquid extraction, ion-exchange recovery of biological products. Experimental model for design of fermentation systems, Anaerobic fermentations.

UNIT-IV
Rate equations for enzyme kinetics, simple and complex reactions. Inhibition kinetics; effect of pH and temperature on rate of enzyme reactions. Mathematical derivation of growth kinetics, mathematical derivations of batch and continuous culture operations; single stage CSTR; mass transfer in aerobic fermentation; resistances encountered; overall mass transfer co-efficient (Ka) determination, factors depending on scale up principle and different methods of scaling up. Metabolic engineering of antibiotic biosynthetic pathways.

PRACTICAL
1. Comparative analysis of design of a batch and continuous fermenter.
2. Calculation of Mathematical derivation of growth kinetics.

3. Solvent extraction & analysis of a metabolite from a bacterial culture.

4. Perform an enzyme assay demonstrating its hydrolytic activity (protease/peptidase/glucosidase etc.)

C-12: RECOMBINANT DNA TECHNOLOGY
(Credits-6: Theory-4, Practical-2)-Max. Marks: 100
THEORY (Each class 1 hr.): Marks-70
PRACTICAL (Each class 2 hrs.): Marks-30
Lectures: 60 (40 Theory + 20 Practical classes)

UNIT-I
Molecular tools and applications- restriction enzymes, ligases, polymerases, alkaline phosphatase.
Gene Recombination and Gene transfer: Transformation, Episomes, Plasmids and other cloning vectors (Bacteriophage-derived vectors, artificial chromosomes), Microinjection, Electroporation, Principle and applications of Polymerase chain reaction (PCR), primer-design, and RT- (Reverse transcription) PCR.

UNIT-II

UNIT-III
Random and site-directed mutagenesis: Primer extension and PCR based methods of site directed mutagenesis, Random mutagenesis, Protein engineering concepts and examples (any two).

UNIT-IV
Genetic engineering in plants: Use of Agrobacterium tumefaciens and A. rhizogenes, Ti plasmids, Strategies for gene transfer to plant cells, Direct DNA transfer to plants, Gene targeting in plants.

PRACTICAL

1. Isolation of genomic DNA from plant cells.

2. Isolation of genomic DNA from E.coli.

3. Qualitative and quantitative analysis of DNA using spectrophotometer.

4. Plasmid DNA isolation.

5. Restriction digestion of DNA

6. Demonstration of PCR.
UNIT-I
(a) Outline of classification of Non-Chordates upto subclasses. Coelomata, Acoelomata, Symmetries, Deutostomes, Protostomes.
(b) Protozoa: Locomotion, Reproduction, evolution of Sex, General features of Paramoecium and Plasmodium. Pathogenic protozoans
(c) Porifera: General characters, outline of Classification; skeleton, Canal System.
(d) Coelenterata: General Characters, Outline of classifications Polymorphism, Various types of stinging cells; Metagenesis, coral reefs and their formation.
(e) Platyhelminthes- General Characters; Outline of classification; Pathogenic flatworms: Parasitic adaptations.

UNIT-II
(b) Arthropoda: General features, Outline of Classification; Larval forms of crustacean, Respiration in Arthropoda; Metamorphosis in insects; Social insects; Insect vectors of diseases; Apiculture, Sericulture.
(c) Mollusca : general features, Outline of classification, Shell Diversity; Torsion in gastropoda,
(d) Echinodermata: General features, Outline of Classification Larval forms
(e) Hemichordata: Phylogeny: Affinities of Balanoglossus

UNIT-III

UNIT-IV

PRACTICAL
1. Identification and Classification of Any three of the following Porifera: Scypha, , Leucosolenia, Euspongia, Hylonea, Euplectella Cnidaria: Medrepora, Millepora, Physalia, Porpita, Valella, Aurelia, Metridium Arthropoda: Julius, Scolopendra, Peripatus, Carcinus, Limulus, Lepisma, Dragonfly, Musca, Acheta Mollusca: Pila, Unio, Mytilus, Loligo, Sepia, Octopus,
Solen Echinodermata: Asterias, Ophiothrix, Echinus, Holothuria, Astrophyton
Hemichordata: Balanoglossus

2. Ecological Note On any of the specimens in Exercise No 1.

4. Comparative study of thallus and reproductive organs of various algae mentioned in theory.

5. Comparative study of vegetative and reproductive parts of various fungi mentioned in theory.

6. Study and section cutting and lectophenol mount of plant disease materials studied in theory.

SEMESTER-VI

C-13: BIO-ANALYTICAL TOOLS
(Credits-6: Theory-4, Practical-2)-Max. Marks: 100

THEORY (Each class 1 hr.): Marks-70
PRACTICAL (Each class 2 hrs.): Marks-30
Lectures: 60 (40 Theory + 20 Practical classes)

UNIT-I
Simple microscopy, phase contrast microscopy, florescence and electron microscopy (TEM and SEM), pH meter, absorption and emission spectroscopy.

UNIT-II
Principle and law of absorption fluorimetry, colorimetry, spectrophotometry (visible, UV, infrared), centrifugation, cell fractionation techniques, isolation of sub-cellular organelles and particles.

UNIT-III
Introduction to the principle of chromatography. Paper chromatography, thin layer chromatography, column chromatography: silica and gel filtration, affinity and ion exchange chromatography, gas chromatography, HPLC.

UNIT-IV
Introduction to electrophoresis, polyacrylamide gel (native and SDS-PAGE), agarose-gel electrophoresis, immuno- electrophoresis, isoelectric focusing, Western blotting.

PRACTICAL

1. Native gel electrophoresis of proteins
2. SDS-polyacrylamide slab gel electrophoresis of proteins under reducing conditions.
3. Preparation of the sub-cellular fractions of rat liver cells.
4. Preparation of protoplasts from leaves.
5. Separation of amino acids by paper chromatography.
6. To identify lipids in a given sample by TLC.

7. To verify the validity of Beers law and determine the molar extinction coefficient of NADH.

C-14: GENOMICS & PROTEOMICS
(Credits-6: Theory-4, Practical-2)-Max. Marks: 100
THEORY (Each class 1 hr.): Marks-70
PRACTICAL (Each class 2 hrs.): Marks-30
Lectures: 60 (40 Theory + 20 Practical classes)

UNIT-I
Introduction to Genomics, DNA sequencing methods manual & automated: Maxam & Gilbert and Sangers method. Pyrosequencing, Genome Sequencing: Shotgun & Hierarchical (clone contig) methods, Computer tools for sequencing projects: Genome sequence assembly software.

UNIT-II
Managing and Distributing Genome Data: Web based servers and softwares for genome analysis: ENSEMBL, VISTA, UCSC Genome Browser, NCBI genome. Selected Model Organisms’ Genomes and Databases.

UNIT-III
Introduction to protein structure, Chemical properties of proteins. Physical interactions that determine the property of proteins. Determination of sizes (Sedimentation analysis, gel filtration, SDS-PAGE); Native PAGE, Determination of primary structures Edman degradation.

UNIT-IV

PRACTICAL
1. Use of SNP databases at NCBI and other sites
2. Detection of Open Reading Frames using ORF Finder
3. Proteomics 2D PAGE database
4. Softwares for Protein localization.
5. Native PAGE
6. SDS-PAGE.

DSE-II: ANIMAL DIVERSITY-II and PLANT DIVERSITY-II
(Credits-6: Theory-4, Practical-2)-Max. Marks: 100
THEORY (Each class 1 hr.): Marks-70
PRACTICAL (Each class 2 hrs.): Marks-30
Lectures: 60 (40 Theory + 20 Practical classes)
UNIT-I

UNIT-II
Reptilia, Aves and Mammalia Reptilia: Classification, Origin Aves: Classification, Origin, flight-adaptations, migration Mammalia: Classification, Origin, dentition Pteridophytes: Type studies Life histories of Selaginella- (Heterospory and seed habit), Equisetum, Pteris, Lycopodium.

UNIT-III
Comparative anatomy of vertebrates I Comparative anatomy of various systems of vertebrates: Integumentary, digestive respiratory systems. Gymnosperms General characters, classification, geological time scale, theories of fossil formation, types of fossils, fossil gymnosperms- Williamsonia & Glossopteris, telome and stele concept.

UNIT-IV
Comparative anatomy of vertebrates II Comparative Anatomy of vertebrates Heart, Aortic arches, Kidney & urinogenital system, Brain, Eye, Ear. Autonomic Nervous system in Mammals Gymnosperms: Type studies Life histories of Cycas & Pinus, economic importance of gymnosperms.

PRACTICAL
2. Identification of the following slides Mammalian Histology: Liver, Lung, Intestine, Kidney, Ovary, Testes.
3. Identification of endoskeletons of frog and rabbit.
4. Examination of morphology and anatomy of vegetative and reproductive parts of Selaginella, Equisetum & Pteris.
5. Examination of morphology and anatomy of vegetative & reproductive parts of Cycas & Pinus
6. Plant collection (pteridophytes & gymnosperms)

PROJECT WORK/REPORT: Marks-100
Unit-I
Introduction to microbial world, microbial nutrition, growth and metabolism. (2 lectures)

Unit-II
Bacteria: Discovery, general characteristics, types-archaebacteria, eubacteria, wall-less forms (mycoplasma and spheroplasts), cell structure, nutritional types, reproduction-vegetative, asexual and recombination (conjugation, transformation and transduction). Economic importance of bacteria with reference to their role in agriculture and industry (fermentation and medicine). (5 lectures)

Unit-III
Algae:- General characteristics; Ecology and distribution; range of thallus organization; Cell structure and components; cell wall, pigment system, reserve food (of only groups represented in the syllabus), flagella; and methods of reproduction, classification; criteria, system of Fritsch, and evolutionary classification of Lee (only upto groups); significant contributions of important phycologists (F.E. Fritsch, G.M. Smith, R.N. Singh, T.V. Desikachary, H.D. Kumar, M.O.P. Iyengar). Role of algae in the environment, agriculture, biotechnology and industry. (6 lectures)

Unit-IV
Cyanophyta:- Ecology and occurrence, range of thallus organization, cell structure, heterocyst, reproduction. Economic importance; role in biotechnology. Morphology and life-cycle of Nostoc. (5 lectures)

Chlorophyta:- General characteristics, occurrence, range of thallus organization, cell structure and reproduction. Morphology and life-cycles of Chlamydomonas, Volvox, Oedogonium, Coleochaete. Evolutionary significance of Prochloron. (5 lectures)

Unit-V
Charophyta:- General characteristics; occurrence, morphology, cell structure and life-cycle of Chara; evolutionary significance. (2 lectures)

Xanthophyta:- General characteristics; range of thallus organization; Occurrence, morphology and life-cycle of Vaucheria. (3 lectures)

Phaeophyta:- Characteristics, occurrence, range of thallus organization, cell structure and reproduction. Morphology and life-cycles of Ectocarpus and Fucus. (3 lectures)

Rhodophyta:- General characteristics, occurrence, range of thallus organization, cell structure and reproduction. Morphology and life-cycle of Polysiphonia. (4 lectures)
PRACTICAL

Microbiology:
1. Electron micrographs/Models of viruses T-Phage and TMV, Line drawings/Photographs of Lytic and Lysogenic Cycle.
2. Types of Bacteria to be observed from temporary/permanent slides/photographs. Electron micrographs of bacteria, binary fission, endospore, conjugation, root Nodule.
3. Gram staining.
4. Endospore staining with malachite green using the (endospores taken from soil bacteria).

Phycology:
Study of vegetative and reproductive structures of Nostoc, Chlamydomonas (electron micrographs), Volvox, Oedogonium, Coleochaete, Chara, Vaucheria, Ectocarpus, Fucus and Polysiphonia, Prochloron through electron micrographs, temporary preparations and permanent slides.

Suggested Readings:

C-2: BIOMOLECULES & CELL BIOLOGY
(Credits-6: Theory-4, Practical-2)-Max. Marks: 100
THEORY (Each class 1 hr.): Marks-70
PRACTICAL (Each class 2 hrs.): Marks-30
Lectures: 60 (40 Theory + 20 Practical classes)

Unit-I
Biomolecules: Types and significance of chemical bonds; Structure and properties of water; pH and buffers.(2 lectures)
Carbohydrates: Nomenclature and classification; Role of monosaccharides (glucose, fructose, sugar alcohols mannitol and sorbitol); Disaccharides (sucrose, maltose, lactose), Oligosaccharides and polysaccharides (structural-cellulose, hemicelluloses, pectin, chitin, mucilage; storage, starch, insulin) (3 lectures)
Lipids: Definition and major classes of storage and structural lipids. Storage lipids. Fatty acids
structure and functions. Essential fatty acids. Triacyl glycerols structure, functions and properties. (2 lectures)

Proteins: Structure of amino acids; Peptide bonds; Levels of protein structure-primary, secondary, tertiary and quaternary; Isoelectric point; Protein denaturation and biological roles of proteins. (2 lectures)

Nucleic acids: Structure of nitrogenous bases; Structure and function of nucleotides; Types of nucleic acids; Structure of A, B, Z types of DNA; Types of RNA; Structure of tRNA. (4 lectures)

Unit-II

Bioenergetics: Laws of thermodynamics, concept of free energy, endergonic and exergonic reactions, coupled reactions, redox reactions. ATP: structure, its role as a energy currency molecule. (3 lectures)

Enzymes: Structure of enzyme: holoenzyme, apoenzyme, cofactors, coenzymes and prosthetic group; Classification of enzymes; Features of active site, substrate specificity, mechanism of action (activation energy, lock and key hypothesis, induced - fit theory), Michaelis Menten equation, enzyme inhibition and factors affecting enzyme activity. (4 lectures)

Unit-III

The cell: Cell as a unit of structure and function; Characteristics of prokaryotic and eukaryotic cells; Origin of eukaryotic cell (Endosymbiotic theory). (2 lectures)

Cell wall and plasma membrane: Chemistry, structure and function of Plant Cell Wall. Overview of membrane function; fluid mosaic model; Chemical composition of membranes; Membrane transport Passive, active and facilitated transport, endocytosis and exocytosis. (3 lectures)

Unit-IV

Cell organelles: Nucleus; Structure-nuclear envelope, nuclear pore complex, nuclear lamina, molecular organization of chromatin; nucleolus. (3 lectures)

Cytoskeleton: Role and structure of microtubules, microfilaments and intermediary filament. (2 lectures)

Chloroplast, mitochondria and peroxisomes: Structural organization; Function; Semiautonomous nature of mitochondria and chloroplast. (2 lectures)

Endoplasmic Reticulum, Golgi Apparatus, Lysosomes (2 lectures)

Unit-V

Cell division: Eukaryotic cell cycle, different stages of mitosis and meiosis. Cell cycle, Regulation of cell cycle. (6 lectures)

PRACTICAL

1. Qualitative tests for carbohydrates, reducing sugars, non-reducing sugars, lipids and proteins.
2. Study of plant cell structure with the help of epidermal peel mount of Onion/Rhoeo/Crinum.
3. Demonstration of the phenomenon of protoplasmic streaming in Hydrilla leaf.
4. Measurement of cell size by the technique of micrometry.
5. Counting the cells per unit volume with the help of haemocytometer. (Yeast/pollen grains).
6. Study of cell and its organelles with the help of electron micrographs.
7. Study the phenomenon of plasmolysis and deplasmolysis.

8. Study different stages of mitosis and meiosis using aceto carmine and aceto orcine method.

Suggested Readings:

SEMESTER-II

C-3: MYCOLOGY & PHYTOPATHOLOGY
(Credits-6: Theory-4, Practical-2)-Max. Marks: 100

THEORY (Each class 1 hr.): Marks-70
PRACTICAL (Each class 2 hrs.): Marks-30
Lectures: 60 (40 Theory + 20 Practical classes)

Unit-I
Introduction to true fungi: Definition, General characteristics; Affinities with plants and animals; Thallus organization; Cellwall composition; Nutrition; Classification.
Chytridiomycetes: General account (5 lectures)
Zygomycota: General characteristics; Ecology; Thallus organisation; Life cycle with reference to Rhizopus. (4 lectures)
Ascomycota: General characteristics (asexual and sexual fruiting bodies); Ecology; Life cycle, Heterokaryosis and parasexuality; life cycle and classification with reference to Saccharomyces, Aspergillus, Penicillium, Alternaria and Neurospora, Peziza. (5 lectures)

Unit-II
Basidiomycota: General characteristics; Ecology; Life cycle and Classification with reference to black stem rust on wheat Puccinia (Physiological Specialization), loose and covered smut (symptoms only), Agaricus; Bioluminescence, Fairy Rings and Mushroom Cultivation. (5 lectures)

Allied Fungi: General characteristics; Status of Slime molds, Classification; Occurrence; Types of plasmodia; Types of fruiting bodies. (3 lectures)

Oomycota: General characteristic; Ecology; Life cycle and classification with reference to Phytophthora, Albugo. (4 lectures)

Unit-III

Symbiotic associations: Lichen Occurrence; General characteristics; Growth forms and range of thallus organization; Nature of associations of algal and fungal partners; Reproduction. Mycorrhiza- Ectomycorrhiza, Endomycorrhiza and their significance. (4 lectures)

Unit-IV

Applied Mycology: Role of fungi in biotechnology, Application of fungi in food industry (Flavour & texture, Fermentation, Baking, Organic acids, Enzymes, Mycoproteins); Secondary metabolites (Pharmaceutical preparations); Agriculture (Biofertilizers); Mycotoxins; Biological control (Mycfungicides, Mycoherbicides, Mycoinsecticides, Myconematicides); Medical mycology. (5 Lectures)

Unit-V

Phytopathology: Terms and concepts; General symptoms; Geographical distribution of diseases; etiology; symptomology; Host- Pathogen relationships; disease cycle and environmental relation; prevention and control of plant diseases, and role of quarantine. Bacterial diseases Citrus canker and angular leaf spot disease of Cotton. Viral diseases Tobacco Mosaic viruses, vein clearing. Fungal diseases Early blight of potato, Black stem rust of wheat, white rust of crucifers. (5 lectures)

PRACTICAL

1. Introduction to the world of fungi (Unicellular, coenocytic/septate mycelium, asocarps & basidiocarps).

2. Rhizopus: study of asexual stage from temporary mounts and sexual structures through permanent slides.

3. Aspergillus and Penicillium: study of asexual stage from temporary mounts. Study of Sexual stage from permanent slides/photographs.

4. Peziza: sectioning through ascocarp.

5. Alternaria: Specimens/photographs and temporary mounts.

6. Puccinia: Herbarium specimens of Black Stem Rust of Wheat and infected Barberry leaves; sections/ mounts of spores on wheat and permanent slides of both the hosts.

7. Agaricus: Specimens of button stage and full grown mushroom; sectioning of gills of Agaricus, fairy rings and bioluminescent mushrooms to be shown.

8. Albugo: Study of symptoms of plants infected with Albugo; asexual phase study through section/temporary mounts and sexual structures through permanent slides.
9. Lichens: Study of growth forms of lichens (crustose, foliose and fruticose) on different substrates. Study of thallus and reproductive structures (soredia and apothecium) through permanent slides. Mycorrhizae: ectomycorrhiza and endomycorrhiza (Photographs)

Suggested Readings:

C-4: ARCHEGONIATE

(Credits-6: Theory-4, Practical-2)-Max. Marks: 100
THEORY (Each class 1 hr.): Marks-70
PRACTICAL (Each class 2 hrs.): Marks-30
Lectures: 60 (40 Theory + 20 Practical classes)

Unit-I
Introduction: Unifying features of archegoniates; Transition to land habit; Alternation of generations. (2 lectures)

Unit-II
Bryophytes: General characteristics; Adaptations to land habit; Classification; Range of thallus organization. Classification (up to family). Riccia, Marchantia, Pellia, Porella, Anthoceros, Sphagnum and Funaria; Reproduction and evolutionary trends in Riccia, Marchantia, Anthoceros and Funaria (developmental stages not included). Ecological and economic importance of bryophytes with special reference to Sphagnum. (12 lectures)

Unit-III
Pteridophytes: General characteristics, classification. Classification (up to family), morphology, anatomy and reproduction of Psilotum, Selaginella, Equisetum and Pteris. (Developmental details not to be included). Apogamy, and apospory, heterospory and seed habit, telome theory, stelar evolution. Ecological and economic importance. (10 lectures)

Unit-IV
Gymnosperms: General characteristics, classification (up to family), morphology, anatomy and reproduction of Cycas, Pinus, Ginkgo and Gnetum. (Developmental details not to be included). Ecological and economic importance. (8 lectures)
Unit-V
Fossils: Geographical time scale, fossils and fossilization process. Morphology, anatomy and affinities of Rhynia, Calamites, Lepidodendron, Lyginopteris and Cycadeoidea. (8 lectures)

PRACTICAL

1. Riccia Morphology of thallus.

2. Marchantia- Morphology of thallus, whole mount of rhizoids & Scales, vertical section of thallus through Gemma cup, whole mount of Gemmae (all temporary slides), vertical section of Antheridiophore, Archegoniophore, longitudinal section of Sporophyte (all permanent slides).

3. Anthoceros- Morphology of thallus, dissection of sporophyte (to show stomata, spores, pseudoelaters, columella) (temporary slide), vertical section of thallus (permanent slide).

4. Pellia, Porella- Permanent slides.

5. Sphagnum- Morphology of plant, whole mount of leaf (permanent slide only).

6. Funaria- Morphology, whole mount of leaf, rhizoids, operculum, peristome, annulus, spores (temporary slides); permanent slides showing antheridal and archegonial heads, longitudinal section of capsule and protonema.

7. Psilotum- Study of specimen, transverse section of synangium (permanent slide).

8. Selaginella- Morphology, whole mount of leaf with ligule, transverse section of stem, whole mount of strobilus, whole mount of microsporophyll and megasporophyll (temporary slides), longitudinal section of strobilus (permanent slide).

9. Equisetum- Morphology, transverse section of internode, longitudinal section of strobilus, transverse section of strobilus, whole mount of sporangiphore, whole mount of spores (wet and dry) (temporary slide), transverse section of rhizome (permanent slide).

10. Pteris- Morphology, transverse section of rachis, vertical section of sporophyll, whole mount of sporangium, whole mount of spores (temporary slides), transverse section of rhizome, whole mount of prothallus with sex organs and young sporophyte (permanent slide).

11. Cycas- Morphology (coralloid roots, bulbil, leaf), whole mount of microsporophyll, transverse section of coralloid root, transverse section of rachis, vertical section of leaflet, vertical section of microsporophyll, whole mount of spores (temporary slides), longitudinal section of ovule, transverse section of root (permanent slide).

12. Pinus- Morphology (long and dwarf shoots, whole mount of dwarf shoot, male and female cones), transverse section of Needle, transverse section of stem, longitudinal section of transverse section of male cone, whole mount of microsporophyll, whole mount of Microspores (temporary slides), longitudinal section of female cone, tangential longitudinal section & radial longitudinal sections stem (permanent slide).
13. Gnetum- Morphology (stem, male & female cones), transverse section of stem, vertical section of ovule (permanent slide)

Suggested Readings:

5. Vander-Poorteri 2009 Introduction to Bryophytes. COP.

SEMESTER-III

C-5: ANATOMY OF ANGIOSPERMS
(Credits-6: Theory-4, Practical-2)-Max. Marks: 100
THEORY (Each class 1 hr.): Marks-70
PRACTICAL (Each class 2 hrs.): Marks-30
Lectures: 60 (40 Theory + 20 Practical classes)

Unit-I
Introduction and scope of Plant Anatomy: Applications in systematics, forensics and pharmacognosy. (2 Lectures)
Tissues: Classification of tissues; Simple and complex tissues (no phylogeny); cytodifferentiation of tracheary elements and sieve elements; Pits and plasmodesmata; Wall ingrowths and transfer cells, adcrustation and incrustation, Ergastic substances. (5 Lectures)

Unit-II
Stem: Organization of shoot apex (Apical cell theory, Histogen theory, Tunica Corpus theory, continuing meristematic residue, cytohistological zonation); Types of vascular bundles; Structure of dicot and monocot stem. (5 Lectures)
Leaf: Structure of dicot and monocot leaf, Kranz anatomy. (4 Lectures)
Root: Organization of root apex (Apical cell theory, Histogen theory, Korper-Kappe theory); Quiescent centre; Root cap; Structure of dicot and monocot root; Endodermis, exodermis and origin of lateral root. (4 Lectures)

Unit-III
Vascular Cambium: Structure, function and seasonal activity of cambium; Secondary growth in root and stem. (4 Lectures)
Wood: Axially and radially oriented elements; Types of rays and axial parenchyma; Cyclic aspects and
reaction wood; Sapwood and heartwood; Ring and diffuse porous wood; Early and late wood, tyloses; Dendrochronology. (5 Lectures)
Periderm: Development and composition of periderm, rhytidome and lenticels. (3 Lectures)

Unit-IV
Adaptive and Protective Systems Epidermal tissue system, cuticle, epicuticular waxes, trichomes (uni- and multicellular, glandular and nonglandular, two examples of each), stomata (classification); Ad- crustation and incrustation; Anatomical adaptations of xerophytes and hydrophytes. (5 Lectures)

Unit-V
Secretory System: Hydathodes, cavities, lithocysts and laticifers. (3 Lectures)

PRACTICAL

1. Study of anatomical details through permanent slides/temporary stain mounts/macerations/museum specimens with the help of suitable examples.

3. Distribution and types of parenchyma, collenchyma and sclerenchyma.

4. Xylem: Tracheary elements-tracheids, vessel elements; thickenings; perforation plates; xylem fibres.

5. Wood: ring porous; diffuse porous; tyloses; heart- and sapwood.

6. Phloem: Sieve tubes-sieve plates; companion cells; phloem fibres.

7. Epidermal system: cell types, stomata types; trichomes: non-glandular and glandular.

9. Stem: monocot, dicot - primary and secondary growth; periderm; lenticels.

10. Leaf: isobilateral, dorsiventral, C4 leaves (Kranz anatomy).

Suggested Readings:

C-6: ECONOMIC BOTANY

Credits-6: Theory-4, Practical-2) Max. Marks: 100

THEORY (Each class 1 hr.): Marks-70

PRACTICAL (Each class 2 hrs.): Marks-30

Lectures: 60 (40 Theory + 20 Practical classes)

Unit-I
Origin of Cultivated Plants: Concept of Centres of Origin, their importance with reference to Vavilovs work. Examples of major plant introductions; Crop domestication and loss of genetic diversity; evolution of new crops/varieties, importance of germplasm diversity. (3 Lectures)

Unit-II
Cereals: Wheat and Rice (origin, morphology, processing & uses), brief account of millets. (3 lectures)
Legumes: General account, importance to man and ecosystem. (3 Lectures)
Sugars & Starches: Morphology and processing of sugarcane, products and by-products of sugarcane industry. Potato morphology, propagation & uses. (3 lectures)

Unit-III
Spices: Listing of important spices, their family and part used, economic importance with special reference to fennel, saffron, clove and black pepper (4 Lectures)
Tobacco: Tobacco (Morphology, processing, uses and health hazards) (2 Lectures)

Unit-IV
Oils & Fats: General description, classification, extraction, their uses and health implications groundnut, coconut, linseed and Brassica and Coconut (Botanical name, family & uses) (4 lectures)
Essential Oils: General account, extraction methods, comparison with fatty oils & their uses. (4 Lectures)

Unit-V
Natural Rubber: Para-rubber: tapping, processing and uses. (2 Lectures)
Timber plants: General account with special reference to teak and pine. (2 Lectures)
Fibres: Classification based on the origin of fibres, Cotton and Jute (morphology, extraction and uses). (2 Lectures)

PRACTICAL

1. Cereals: Rice (habit sketch, study of paddy and grain, starch grains, micro-chemical tests).

2. Legumes: Soya bean, Groundnut, (habit, fruit, seed structure, micro-chemical tests).

3. Sugars & Starches: Sugarcane (habit sketch; cane juice- micro-chemical tests), Potato(habit sketch, tuber morphology, T.S. tuber to show localization of starch grains, w.m. starch grains, micro-chemical tests).

4. Spices: Black pepper, Fennel and Clove (habit and sections).
5. Beverages: Tea (plant specimen, tea leaves), Coffee (plant specimen, beans).

6. Oils & Fats: Coconut- T.S. nut, Mustardplant specimen, seeds; tests for fats in crushed seeds.

7. Essential oil-yielding plants: Habit sketch of Rosa, Vetiveria, Santalum and Eucalyptus (specimens/photographs).

10. Tobacco: specimen and products of Tobacco.

12. Fibre-yielding plants: Cotton (specimen, whole mount of seed to show lint and fuzz; whole mount of fibre and test for cellulose), Jute (specimen, transverse section of stem, test for lignin on transverse section of stem and fibre).

Suggested Readings:

C-7: GENETICS-
(Credits-6: Theory-4, Practical-2)-Max. Marks: 100
THEORY (Each class 1 hr.): Marks-70
PRACTICAL (Each class 2 hrs.): Marks-30
Lectures: 60 (40 Theory + 20 Practical classes)

Unit-I
Mendelian genetics and its extension Mendelism: History; Principles of inheritance; Chromosome theory of inheritance; Autosomes and sex chromosomes; Probability and pedigree analysis; Incomplete dominance and codominance; Multiple alleles, Lethal alleles, Epistasis, Pleiotropy, Recessive and Dominant traits, Penetrance and Expressivity, Numericals; Polygenic inheritance. (16 lectures)

Unit-II
Extrachromosomal Inheritance: Chloroplast mutation: Variegation in Four oclock plant; Mitochondrial mutations in yeast; Maternal effects-shell coiling in snail; Infective heredity- Kappa particles in Paramecium. (6 lectures)

Unit-III
Linkage, crossing over and chromosome mapping: Linkage and crossing over-Cytological basis of crossing over; Recombination frequency, two factor and three factor crosses; Interference and coincidence; Numericals based on gene mapping; Sex Linkage. (12 lectures)
Unit-IV
Variation in chromosome number and structure: Deletion, Duplication, Inversion, Translocation, Position effect, Euploidy and Aneuploidy (8 lectures)
Gene mutations: Types of mutations; Molecular basis of Mutations; Mutagens physical and chemical (Base analogs, deaminating, alkylating and intercalating agents); Detection of mutations: CIB method. Role of Transposons in mutation. DNA repair mechanisms. (6 lectures)

Unit-V
Fine structure of gene: Classical vs molecular concepts of gene; Cis-Trans complementation test for functional allelism; Structure of Phage T4, rII Locus. (6 lectures)
Population and Evolutionary Genetics: Allele frequencies, Genotype frequencies, Hardy-Weinberg Law, role of natural selection, mutation, genetic drift. Genetic variation and Speciation. (6 lectures)

PRACTICAL

1. Meiosis through temporary squash preparation.
2. Mendel's laws through seed ratios. Laboratory exercises in probability and chi-square analysis.
3. Chromosome mapping using test cross data.
4. Pedigree analysis for dominant and recessive autosomal and sex linked traits with floral chart.
7. Study of aneuploidy: Downs, Klinefelters and Turners syndromes.
8. Photographs/Permanent Slides showing Translocation Ring, Laggards and Inversion Bridge.

Suggested Readings:

SEMESTER-IV
Unit-I
Nucleic acids : Carriers of genetic information: Historical perspective; DNA as the carrier of genetic information (Griffiths, Hershey & Chase, Avery, McLeod & McCarty, Fraenkel-Conrats experiment. (4 lectures)

Unit-II
The Structures of DNA and RNA / Genetic Material: DNA Structure: Miescher to Watson and Crick- historic perspective, DNA structure, Salient features of double helix, Types of DNA, Types of genetic material, denaturation and renaturation, cot curves; Organization of DNAProkaryotes, Viruses, Eukaryotes. RNA Structure- Organelle DNA - mitochondria and chloroplast DNA. The Nucleosome -Chromatin structure- Euchromatin, Heterochromatin- Constitutive and Facultative heterochromatin. (8 lectures)
The replication of DNA: Chemistry of DNA synthesis (Kornbergs discovery); General principles bidirectional, semi-conservative and semi discontinuous replication, RNA priming; Various models of DNA replication, including rolling circle, (theta) mode of replication, replication of linear ds-DNA, replication of the 5end of linear chromosome; Enzymes involved in DNA replication. (6 lectures)

Unit-III
Central dogma and genetic code: Key experiments establishing-The Central Dogma (Adaptor hypothesis and discovery of mRNAtemplate), Genetic code (deciphering & salient features) (2 lectures)
Mechanism of Transcription: Transcription in prokaryotes; Transcription in eukaryotes (4 lectures)
Processing and modification of RNA: Split genes-concept of introns and exons, removal of introns, spliceosome machinery, splicing pathways, group I & group II intron splicing, alternative splicing eukaryotic mRNA processing(5 cap, 3 polyA tail); Ribozymes, exon shuffling; RNA editing and mRNA transport. (5 lectures)

Unit-IV
Translation (Prokaryotes and eukaryotes): Ribosome structure and assembly, mRNA; Charging of tRNA, aminoacyl tRNA synthetases; Various steps in protein synthesis, proteins involved in initiation, elongation and termination of polypeptides; Fidelity of translation; Inhibitors of protein synthesis; Post-translational modifications of proteins. (6 lectures)

Unit-V
Regulation of transcription in prokaryotes and eukaryotes: Principles of transcriptional regulation; Prokaryotes: Regulation of lactose metabolism and tryptophan synthesis in E.coli. Eukaryotes: transcription factors, heat shock proteins, steroids and peptide hormones; Gene silencing. (5 lectures)

PRACTICAL
1. Preparation of LB medium and raising E.Coli.
2. Isolation of genomic DNA from E.Coli.
3. DNA isolation and RNA estimation by orcinol method.

4. DNA estimation by diphenylamine reagent/UV Spectrophotometry.

5. Study of DNA replication mechanisms through photographs (Rolling circle, Theta replication and semi-discontinuous replication).

6. Study of structures of prokaryotic RNA polymerase and eukaryotic RNA polymerase II through photographs.

7. Photographs establishing nucleic acid as genetic material (Messelson and Stahls, Avery et al, Griffiths, Hershey & Chases and Fraenkel & Conrats experiments)

8. Study of the following through photographs: Assembly of Spliceosome machinery; Splicing mechanism in group I & group II introns; Ribozyme and Alternative splicing.

Suggested Readings:

C-9: PLANT ECOLOGY & PHYTOGEOGRAPHY
(Credits-6: Theory-4, Practical-2)-Max. Marks: 100

THEORY (Each class 1 hr.): Marks-70
PRACTICAL (Each class 2 hrs.): Marks-30
Lectures: 60 (40 Theory + 20 Practical classes)

Unit-I
Introduction Concept of ecology, Autoecology, Synecology, system ecology, Levels of organization. Inter-relationships between the living world and the environment, the components of environmental, concept of hydrosphere and lithosphere and dynamism, homeostasis. (2 lectures)

Unit-II
Soil: Importance; Origin; Formation; Composition; Physical; Chemical and Biological components; Soil profile; Role of climate in soil development. (5 lectures)
Water: Importance; States of water in the environment; Atmospheric moisture; Precipitation types (rain, fog, snow, hail, dew); Hydrological Cycle; Water in soil; Water table. (2 lectures)
Light, temperature, wind and fire: Variations; adaptations of plants to their variation. (4 lectures)

Unit-III
Biotic interactions: 2 lectures Population ecology: Characteristics and Dynamics .Ecological Speciation 4 lectures Plant communities: Concept of ecological amplitude; Habitat and niche; Characters: analytical and synthetic; Ecotone and edge effect; Dynamics: succession processes, types; climax concepts. (4 lectures)

Unit-IV
Ecological pyramids. (4 lectures)
Functional aspects of ecosystem: Principles and models of energy flow; Production and productivity; Ecological efficiencies; Biogeochemical cycles; Cycling of Carbon, Nitrogen and Phosphorus. (5 lectures)

Unit-V
Phytogeography: Principles; Continental drift; Theory of tolerance; Endemism; Brief description of major terrestrial biomes (one each from tropical, temperate & tundra); Phytogeographical division of India; Local Vegetation. (8 lectures)

PRACTICAL

1. Study of instruments used to measure microclimatic variables: Soil thermometer, maximum and minimum thermometer, anemometer, psychrometer/hygrometer, rain gauge and lux meter.

2. Determination of pH of various soil and water samples (pH meter, universal indicator/Lovibond comparator and pH paper)

3. Analysis for carbonates, chlorides, nitrates, sulphates, organic matter and base deficiency from two soil samples by rapid field tests.

4. Determination of organic matter of different soil samples by Walkley & Black rapid titration method.

5. Comparison of bulk density, porosity and rate of infiltration of water in soils of three habitats.

6. Determination of dissolved oxygen of water samples from polluted and unpolluted sources.

7. (a) Study of morphological adaptations of hydrophytes and xerophytes (four each). (b) Study of biotic interactions of the following: Stem parasite (Cuscuta), Root parasite (Orobanche) Epiphytes, Predation (Insectivorous plants).

8. Determination of minimal quadrat size for the study of herbaceous vegetation in the college campus, by species area curve method (species to be listed).

9. Quantitative analysis of herbaceous vegetation in the college campus for frequency and comparison with Raunkiaers frequency distribution law.

10. Quantitative analysis of herbaceous vegetation for density and abundance in the college campus.
11. Field visit to familiarise students with ecology of different sites.

Suggested Readings:

C-10: PLANT SYSTEMATICS

(Credits: Theory-4, Practical-2)-Max. Marks: 100

THEORY (Each class 1 hr.): Marks-70

PRACTICAL (Each class 2 hrs.): Marks-30

Lectures: 60 (40 Theory + 20 Practical classes)

Unit-I

Plant identification, Classification, Nomenclature; Biosystematics. (2 lectures)

Identification: Field inventory; Functions of Herbarium; Important herbaria and botanical gardens of the world and India; Virtual herbarium; E-flora; Documentation: Flora, Monographs, Journals; Keys: Single access and Multi-access. (5 lectures)

Unit-II

Taxonomic hierarchy: Concept of taxa (family, genus, species); Categories and taxonomic hierarchy; Species concept (taxonomic, biological, evolutionary). (5 lectures)

Botanical nomenclature: Principles and rules (ICN); Ranks and names; Typification, author citation, valid publication, rejection of names, principle of priority and its limitations; Names of hybrids. (5 lectures)

Unit-III

Systematics—an interdisciplinary science: Evidence from palynology, cytology, phytochemistry and molecular data. (6 lectures)

Systems of classification: Major contributions of Theophrastus, Bauhin, Tournefort, Linnaeus, Adanson, de Candolle, Bessey, Hutchinson, Takhtajan and Cronquist; Classification systems of Bentham and Hooker (upto series) and Engler and Prantl (upto series); Brief reference of Angiosperm Phylogeny Group (APG III) classification. (6 lectures)

Unit-IV

Biometrics, numerical taxonomy and cladistics: Characters; Variations; OTUs, character weighting and coding; cluster analysis; Phenograms, cladograms (definitions and differences). (4 lectures)
Unit-V
Phylogeny of Angiosperms: Terms and concepts (primitive and advanced, homology and analogy, parallelism and convergence, monophyly, Paraphyly, polyphyly and clades). Origin & evolution of angiosperms; coevolution of angiosperms and animals; methods of illustrating evolutionary relationship (phylogenetic tree, cladogram). (7 lectures)

PRACTICAL

1. Study of vegetative and floral characters of the following families (Description, V.S. flower, section of ovary, floral diagram/s, floral formula/e and systematic position according to Bentham & Hookers system of classification):
 - Ranunculaceae - Ranunculus, Delphinium
 - Brassicaceae - Brassica, Alyssum / Iberis
 - Myrtaceae - Eucalyptus, Callistemon
 - Umbelliferae - Coriandrum / Anethum / Foeniculum
 - Asteraceae - Sonchus/Launaea, Vernonia/Ageratum, Eclipta/Tridax
 - Solanaceae - Solanum nigrum/Withania
 - Lamiaceae - Salvia/Ocimum
 - Euphorbiaceae - Euphorbia hirta/E.mili, Jatropha
 - Liliaceae - Asphodelus/Lilium/Allium
 - Poaceae - Triticum/Hordeum/Avena

2. Field visit (local) Subject to grant of funds from the university.

3. Mounting of a properly dried and pressed specimen of any wild plant with herbarium label (to be submitted in the record book)

Suggested Readings:

SEMESTER-V
C-11: REPRODUCTIVE BIOLOGY OF ANGIOSPERMS
(Credits-6: Theory-4, Practical-2)-Max. Marks: 100
THEORY (Each class 1 hr.): Marks-70
PRACTICAL (Each class 2 hrs.): Marks-30
Lectures: 60 (40 Theory + 20 Practical classes)
Unit-I

Unit-II
Anther: Anther wall: Structure and functions, microsporogenesis, callose deposition and its significance. (2 lectures)
Pollen biology: Microgametogenesis; Pollen wall structure, MGU (male germ unit) structure, NPC system; Palynology and scope (a brief account); Pollen wall proteins; Pollen viability, storage and germination; Abnormal features: Pseudomonads, polyads, massulae, pollinia. (5 lectures)

Unit-III
Ovule: Structure; Types; Special structures: endothelium, obturator, aril, caruncle and hypostase; Female gametophyte megasporogenesis (monosporic, bisporic and tetrasporic) and megagametogenesis (details of Polygonum type); Organization and ultrastructure of mature embryo sac. (5 lectures)
Endosperm: Types, development, structure and functions. (3 lectures)

Embryo: Six types of embryogeny; General pattern of development of dicot and monocot embryo; Suspensor: structure and functions; Embryo-endosperm relationship; Nutrition of embryo; Unusual features; Embryo development in Paeonia. (6 lectures)

Unit-IV
Pollination and fertilization: Pollination types and significance; adaptations; structure of stigma and style; path of pollen tube in pistil; double fertilization. (4 lectures)
Self incompatibility: Basic concepts (interspecific, intraspecific, homomorphic, heteromorphic, GSI and SSI); Methods to overcome selfincompatibility: mixed pollination, bud pollination, stub pollination; Intraovarian and in vitro pollination; Modification of stigma surface, parasexual hybridization; Cybrids, in vitro fertilization. (5 lectures)

Unit-V
Seed: Structure, importance and dispersal mechanisms (3 lectures)
Polyembryony and apomixes: Introduction; Classification; Causes and applications. (4 lectures)
Germline transformation: Pollen grain and ovules through pollen tube pathway method/ Agrobacterium/ electrofusion/floral dip/biolistic. (4 lectures)

PRACTICAL
1. Anther: Wall and its ontogeny; Tapetum (amoeboid and glandular); MMC, spore tetrads, uninucleate, bicelled and dehisced anther stages through slides/micrographs, male germ unit (MGU) through photographs and schematic representation.
2. Pollen grains: Fresh and acetolyzed showing ornamentation and aperture, psuedomonads, polyads, pollinia (slides/photographs, fresh material), ultrastructure of pollen wall (micrograph); Pollen viability: Tetrazolium test, germination: Calculation of percentage germination in different media using hanging drop method.
3. Ovule: Types-anatropous, orthotropous, amphitropous/campylotropous, circinotropous, unitegmic,
bitegmic; Tenuinucellate and crassinucellate; Special structures: Endothelium, obturator, hypostase, caruncle and aril (permanent slides/specimens/photographs).

4. Female gametophyte through permanent slides/photosographs: Types, ultrastructure of mature egg apparatus.

5. Intra-ovarian pollination; Test tube pollination through photographs.

6. Endosperm: Dissections of developing seeds for endosperm with free-nuclear haustoria.

7. Embryogenesis: Study of development of dicot embryo through permanent slides; dissection of developing seeds for embryos at various developmental stages; Study of suspensor through electron micrographs.

Suggested Readings:

C-12: PLANT PHYSIOLOGY
(Credits-6: Theory-4, Practical-2)-Max. Marks: 100

THEORY (Each class 1 hr.): Marks-70
PRACTICAL (Each class 2 hrs.): Marks-30

Lectures: 60 (40 Theory + 20 Practical classes)

Unit-I

Translocation in the phloem: Experimental evidence in support of phloem as the site of sugar translocation. PressureFlow Model; Phloem loading and unloading; Sourcesink relationship. (5 lectures)

Unit-II
Mineral nutrition: Essential and beneficial elements, macro and micronutrients, methods of study and use of nutrient solutions, criteria for essentiality, mineral deficiency symptoms, roles of essential elements, chelating agents. (5 lectures)

Unit-III
Nutrient Uptake: Soil as a nutrient reservoir, transport of ions across cell membrane, passive absorption, electrochemical gradient, facilitated diffusion, active absorption, role of ATP, carrier systems, proton ATPase pump and ion flux, uniport, co-transport, symport, antiport. (5 lectures)
Unit-IV
Plant growth regulators: Discovery, chemical nature (basic structure), bioassay and physiological roles of Auxin, Gibberellins, Cytokinin, Abscisic acid, Ethylene. Brassinosteroids and Jasmonic acid. (10 lectures)

Unit-V
Physiology of flowering: Photoperiodism, flowering stimulus, florigen concept, vernalization, seed dormancy. (4 lectures)
Phytochrome: Discovery, chemical nature, role of phytochrome in photomorphogenesis, low energy responses (LER) and high irradiance responses (HIR), mode of action. (5 lectures)

PRACTICAL

1. Determination of osmotic potential of plant cell sap by plasmolytic method.
2. Determination of water potential of given tissue (potato tuber) by weight method.
4. Calculation of stomatal index and stomatal frequency from the two surfaces of leaves of a mesophyte and xerophyte.
5. To calculate the area of an open stoma and percentage of leaf area open through stomata in a mesophyte and xerophyte (both surfaces).
6. To study the phenomenon of seed germination (effect of light).
7. To study the induction of amylase activity in germinating barley grains.

Demonstration experiments:
(a) To demonstrate suction due to transpiration. (b) Fruit ripening/Rooting from cuttings (Demonstration). (c) Bolting experiment/Avena coleptile bioassay (demonstration).

Suggested Readings:

SEMESTER-VI

C-13: PLANT METABOLISM
(Credits-6: Theory-4, Practical-2)-Max. Marks: 100
THEORY (Each class 1 hr.): Marks-70
PRACTICAL (Each class 2 hrs.): Marks-30
Lectures: 60 (40 Theory + 20 Practical classes)
Unit-I
Concept of metabolism: Introduction, anabolic and catabolic pathways, regulation of metabolism, role of regulatory enzymes (allosteric, covalent modulation and Isozymes). (5 lectures)
Carbohydrate metabolism: Synthesis and catabolism of sucrose and starch. (1 lectures)

Unit-II
Carbon assimilation: Historical background, photosynthetic pigments, role of photosynthetic pigments (chlorophylls and accessory pigments), antenna molecules and reaction centres, photochemical reactions, photosynthetic electron transport, PSI, PSII, Q cycle, \(CO_2 \) reduction, photorespiration, C4 pathways; Crassulacean acid metabolism; Factors affecting \(CO_2 \) reduction. (10 lectures)

Unit-III
Carbon Oxidation: Glycolysis, fate of pyruvate, regulation of glycolysis, oxidative pentose phosphate pathway, oxidative decarboxylation of pyruvate, regulation of PDH, NADH shuttle; TCA cycle, amphibolic role, anaplerotic reactions, regulation of the cycle, mitochondrial electron transport, oxidative phosphorylation, cyanideresistant respiration, factors affecting respiration. (6 lectures)
ATP-Synthesis: Mechanism of ATP synthesis, substrate level phosphorylation, chemiosmotic mechanism (oxidative and photophosphorylation), ATP synthase, Boyers conformational model, Rackers experiment, Jagendorfs experiment; role of uncouplers. (4 lectures)

Unit-IV
Lipid metabolism: Synthesis and breakdown of triglycerides, \(\beta \)-oxidation, glyoxylate cycle, gluconeogenesis and its role in mobilisation of lipids during seed germination, \(\alpha \) oxidation. (5 lectures)

Unit-V
Nitrogen metabolism: Nitrate assimilation, biological nitrogen fixation (examples of legumes and non-legumes); Physiology and biochemistry of nitrogen fixation; Ammonia assimilation and transamination. (5 lectures)
Mechanisms of signal transduction: Calcium, phospholipids, cGMP, NO. (4 lectures)

PRACTICAL

1. Chemical separation of photosynthetic pigments.
2. Experimental demonstration of Hills reaction.
3. To study the effect of light intensity on the rate of photosynthesis.
4. Effect of carbon dioxide on the rate of photosynthesis.
5. To compare the rate of respiration in different parts of a plant.
6. To demonstrate activity of Nitrate Reductase in germinationg leaves of different plant sources.
7. To study the activity of lipases in germinating oilseeds and demonstrate mobilization of lipids during germination.
8. Demonstration of fluorescence by isolated chlorophyll pigments.
Suggested Readings:

C-14: PLANT BIO-TECHNOLOGY
(Credits-6: Theory-4, Practical-2)-Max. Marks: 100

THEORY (Each class 1 hr.): Marks-70
PRACTICAL (Each class 2 hrs.): Marks-30
Lectures: 60 (40 Theory + 20 Practical classes)

Unit-I
Plant Tissue Culture: Historical perspective; Aseptic tissue culture techniques, Composition of media; Nutrient and hormone requirements (role of vitamins and hormones). (3 lectures)

Unit-II
Totipotency; Organogenesis; Embryogenesis (somatic and zygotic); Protoplast isolation, culture and fusion; Tissue culture applications (micropropagation, androgenesis, virus elimination, secondary metabolite production, haploids, triploids and hybrids; Cryopreservation; Germplasm Conservation). (7 lectures)

Unit-III
Recombinant DNA technology-I: Restriction Endonucleases (History, Types I-IV, biological role and application); Restriction Mapping (Linear and Circular); Cloning Vectors: Prokaryotic (pUC 18 and pUC19, pBR322, Ti plasmid, BAC); Lambda phage, M13 phagemid, Cosmid, Shuttle vector; Eukaryotic Vectors (YAC and briefly PAC, MAC, HAC). Gene Cloning (Recombinant DNA, Bacterial Transformation and selection of recombinant clones, PCR-mediated gene cloning). (10 lectures)

Unit-IV
Recombinant DNA technology-II: Gene Construct; construction of genomic and cDNA libraries, screening DNA libraries to obtain gene of interest by genetic selection; complementation, colony hybridization; Probes-oligonucleotide, heterologous, PCR; Methods of gene transfer- Agrobacterium-mediated, Direct gene transfer by Electroporation, Microinjection, Microprojectile bombardment; Selection of transgenics selectable marker and reporter genes (Luciferase, GUS, GFP). (10 lectures)

Unit-V
Applications of Biotechnology: Pest resistant (Bt-cotton); herbicide resistant plants (RoundUp Ready soybean); Transgenic crops with improved quality traits (Flavr Savr tomato, Golden rice); Improved horticultural varieties (Moondust carnations); Role of transgenics in bioremediation (Superbug); edible vaccines; Industrial enzymes (Aspergillase, Protease, Lipase); Gently Engineered ProductsHuman Growth Hormone; Humulin; Biosafety concerns. (10 lectures)

PRACTICAL
1. (a) Preparation of MS medium.
 (b) Demonstration of in vitro sterilization and inoculation methods using leaf and nodal explants of tobacco, Datura, Brassica etc.

2. Study of anther, embryo and endosperm culture, micropropagation, somatic embryogenesis & artificial seeds through photographs.

3. Isolation of protoplasts.

4. Construction of restriction map of circular and linear DNA from the data provided.

5. Study of methods of gene transfer through photographs: Agrobacterium-mediated, direct gene transfer by electroporation, microinjection, microprojectile bombardment.

6. Study of steps of genetic engineering for production of Bt cotton, Golden rice, Flavr Savr tomato through photographs.

7. Isolation of plasmid DNA.

8. Restriction digestion and gel electrophoresis of plasmid DNA.

Suggested Readings:

DISCIPLINE SPECIFIC ELECTIVE COURSES

DSE-1A: ANALYTICAL TECHNIQUES IN PLANT SCIENCES
(Credits-6: Theory-4, Practical-2)-Max. Marks: 100

THEORY (Each class 1 hr.): Marks-70
PRACTICAL (Each class 2 hrs.): Marks-30
Lectures: 60 (40 Theory + 20 Practical classes)

UNIT-I: Imaging and related techniques: Principles of microscopy; Light microscopy; Fluorescence microscopy; Confocal microscopy; Use of fluorochromes: (a) Flow cytometry (FACS); (b) Applications of fluorescence microscopy: Chromosome banding, FISH, chromosome painting; Transmission and Scanning electron microscopy sample preparation for electron microscopy, cryofixation, negative staining, shadow casting, freeze fracture, freeze etching. (10 lectures)

UNIT-II: Cell fractionation: Centrifugation: Differential and density gradient centrifugation, sucrose density gradient, CsCl2 gradient, analytical centrifugation, ultracentrifugation, marker enzymes. (5 lectures)

UNIT-III: Radioisotopes: Use in biological research, auto-radiography, pulse chase experiment. (3 lectures)

Spectrophotometry: Principle and its application in biological research. 3 lectures Chromatography: Principle; Paper chromatography; Column chromatography, TLC, GLC, HPLC, Ion-exchange chromatography; Molecular sieve chromatography; Affinity chromatography. (6 lectures)

UNIT-IV: Characterization of proteins and nucleic acids: Mass spectrometry; X-ray diffraction; X-ray crystallography; Characterization of proteins and nucleic acids; Electrophoresis: AGE, PAGE, SDS-PAGE (5 lectures)

UNIT-V: Biostatistics: Statistics, data, population, samples, parameters; Representation of Data: Tabular, Graphical; Measures of central tendency: Arithmetic mean, mode, median; Measures of dispersion: Range, mean deviation, variation, standard deviation; Chi-square test for goodness of fit. (8 lectures)

PRACTICAL

1. Study of Blotting techniques: Southern, Northern and Western, DNA fingerprinting, DNA sequencing, PCR through photographs.

2. Demonstration of ELISA.

3. To separate nitrogenous bases by paper chromatography.

4. To separate sugars by thin layer chromatography.

5. Isolation of chloroplasts by differential centrifugation.

6. To separate chloroplast pigments by column chromatography.

7. To estimate protein concentration through Lowry's methods.
8. To separate proteins using PAGE.

9. To separation DNA (marker) using AGE.

10. Study of different microscopic techniques using photographs/micrographs (freeze fracture, freeze etching, negative staining, positive staining, fluorescence and FISH).

11. Preparation of permanent slides (double staining).

Suggested Readings:

DSE-1B: BIO-INFORMATICS
(Credits-6: Theory-4, Practical-2)-Max. Marks: 100
THEORY (Each class 1 hr.): Marks-70
PRACTICAL (Each class 2 hrs.): Marks-30
Lectures: 60 (40 Theory + 20 Practical classes)

UNIT-I: Introduction to Bioinformatics: Introduction, Branches of Bioinformatics, Aim, Scope and Research areas of Bioinformatics. (3 Lectures)
Databases in Bioinformatics: Introduction, Biological Databases, Classification format of Biological Databases, Biological Database Retrieval System. (4 Lectures)

UNIT-II: Biological Sequence Databases: National Center for Biotechnology Information (NCBI): Tools and Databases of NCBI, Database Retrieval Tool, Sequence Submission to NCBI, Basic local alignment search tool (BLAST), Nucleotide Database, Protein Database, Gene Expression Database. EMBL Nucleotide Sequence Database (EMBL-Bank): Introduction, Sequence Retrieval, Sequence Submission to EMBL, Sequence analysis tools. DNA Data Bank of Japan (DDBJ): Introduction, Resources at DDBJ, Data Submission at DDBJ. Protein Information Resource (PIR): About PIR, Resources of PIR, Databases of PIR, Data Retrieval in PIR. Swiss-Prot: Introduction and Salient Features. (15 Lectures)

UNIT-III: Sequence Alignments: Introduction, Concept of Alignment, Multiple Sequence Alignment (MSA), MSA by CLUSTALW, Scoring Matrices, Percent Accepted Mutation (PAM), Blocks of Amino Acid Substitution Matrix (BLOSUM). (8 Lectures)

UNIT-IV: Molecular Phylogeny: Methods of Phylogeny, Software for Phylogenetic Analyses, Consistency of Molecular Phylogenetic Prediction. (5 Lectures)
UNIT-V: Applications of Bioinformatics: Structural Bioinformatics in Drug Discovery, Quantitative structure-activity relationship (QSAR) techniques in Drug Design, Microbial genome applications, Crop improvement. (5 Lectures)

PRACTICAL

1. Nucleic acid and protein databases.
2. Sequence retrieval from databases.
3. Sequence alignment.
4. Sequence homology and Gene annotation.

Suggested Readings:

DSE-2A: PLANT BREEDING
(Credits-6: Theory-4, Practical-2)-Max. Marks: 100
THEORY (Each class 1 hr.): Marks-70
PRACTICAL (Each class 2 hrs.): Marks-30
Lectures: 60 (40 Theory + 20 Practical classes)

UNIT-II: Methods of crop improvement: Introduction: Centres of origin and domestication of crop plants, plant genetic resources; Acclimatization; Selection methods: For self pollinated, cross pollinated and vegetatively propagated plants; Hybridization: For self, cross and vegetatively propagated plants Procedure, advantages and limitations. (15 lectures)

UNIT-III: Quantitative inheritance: Concept, mechanism, examples of inheritance of Kernel colour in wheat, Skin colour in human beings. Monogenic vs polygenic Inheritance. (6 lectures)

UNIT-IV: Inbreeding depression and heterosis: History, genetic basis of inbreeding depression and heterosis; Applications. (6 lectures)

UNIT-V: Crop improvement and breeding: Role of mutations; Polyploidy; Distant hybridization and role of biotechnology in crop improvement. (7 lectures)

PRACTICAL
Practical related to theory.

Suggested Readings:

DSE-2B: NATURAL RESOURCE MANAGEMENT
(Credits-6: Theory-4, Practical-2)-Max. Marks: 100

THEORY (Each class 1 hr.): Marks-70
PRACTICAL (Each class 2 hrs.): Marks-30
Lectures: 60 (40 Theory + 20 Practical classes)

UNIT-I: Natural resources: Definition and types. 2 lectures Sustainable utilization: Concept, approaches (economic, ecological and socio-cultural). (5 lectures)

UNIT-II: Land: Utilization (agricultural, pastoral, horticultural, silvicultural); Soil degradation and management. (5 lectures)
Water: Fresh water (rivers, lakes, groundwater, aquifers, watershed); Marine; Estuarine; Wetlands; Threats and management strategies. (4 lectures)

UNIT-III: Biological Resources: Biodiversity-definition and types; Significance; Threats; Management strategies; Bioprospecting; IPR; CBD; National Biodiversity Action Plan). (8 lectures)
Forests: Definition, Cover and its significance (with special reference to India); Major and minor forest products; Depletion; Management. (4 lectures)

UNIT-IV: Energy: Renewable and non-renewable sources of energy 4 lectures Contemporary practices in resource management: EIA, GIS, Participatory Resource Appraisal, Ecological Footprint with emphasis on carbon footprint. (6 lectures)

UNIT-V: Resource Accounting; Waste management. National and international efforts in resource management and conservation (4 lectures)

PRACTICAL

1. Estimation of solid waste generated by a domestic system (biodegradable and nonbiodegradable) and its impact on land degradation.

2. Collection of data on forest cover of specific area.

3. Measurement of dominance of woody species by DBH (diameter at breast height) method.

4. Calculation and analysis of ecological footprint.

5. Ecological modeling.

Suggested Readings:

DSE-2C: BIO-STATISTICS
(Credits-6: Theory-4, Practical-2)-Max. Marks: 100

THEORY (Each class 1 hr.): Marks-70
PRACTICAL (Each class 2 hrs.): Marks-30
Lectures: 60 (40 Theory + 20 Practical classes)

UNIT-I:
Unit-I Biostatistics - definition - statistical methods - basic principles. Variables - measurements, functions, limitations and uses of statistics. (8 lectures)

Unit-II: Collection of data primary and secondary - types and methods of data collection procedures - merits and demerits. Classification - tabulation and presentation of data sampling methods. (8 lectures)

Unit-III: Measures of central tendency - mean, median, mode, geometric mean - merits & demerits. Measures of dispersion - range, standard deviation, mean deviation, quartile deviation - merits and demerits; Co-efficient of variations. (10 lectures)

Unit-IV: Correlation - types and methods of correlation, regression, simple regression equation, fitting prediction, similarities and dissimilarities of correlation and regression. (8 lectures)

Unit-V: Statistical inference - hypothesis - simple hypothesis - student 't' test - chi square test. (6 lectures)

PRACTICAL

1. Calculation of mean, standard deviation and standard error

2. Calculation of correlation coefficient values and finding out the probability

3. Calculation of F value and finding out the probability value for the F value.

Suggested Readings:

UNIT-I: Defining plant stress: Acclimation and adaptation. (2 lectures)

UNIT-II: Environmental factors: Water stress; Salinity stress; High light stress; Temperature stress; Hypersensitive reaction; Pathogenesis related (PR) proteins; Systemic acquired resistance; Mediation of insect and disease resistance by jasmonates. (12 lectures)

UNIT-III: Stress sensing mechanisms in plants: Role of nitric oxide. Calcium modulation, Phospholipid signaling (12 lectures)

UNIT-IV: Developmental and physiological mechanisms that protect plants against environmental stress: Adaptation in plants; Changes in root: shoot ratio; Aerenchyma development; Osmotic adjustment; Compatible solute production. (10 lectures)

UNIT-V: Reactive oxygen species Production and scavenging mechanisms. (4 lectures)

PRACTICAL

1. Quantitative estimation of peroxidase activity in the seedlings in the absence and presence of salt stress.

2. Superoxide activity in seedlings in the absence and presence of salt stress.

3. Assay of Ascorbate

5. Assay of superoxide dismutase activity.

6. Quantitative estimation and analysis of catalase.

Suggested Readings:

UNIT-I: Introduction: Scope and importance, Branches of horticulture; Role in rural economy and employment generation; Importance in food and nutritional security; Urban horticulture and ecotourism. (2 lectures)
Ornamental plants: Types, classification (annuals, perennials, climbers and trees); Identification and salient features of some ornamental plants [rose, marigold, gladiolus, carnations, orchids, poppies, gerberas, tuberose, sages, cacti and succulents (opuntia, agave and spurges)] Ornamental flowering trees (Indian laburnum, gulmohar, Jacaranda, Lagerstroemia, fishtail and areca palms, semul, Coral tree). (3 lectures)

UNIT-II: Fruit and vegetable crops: Production, origin and distribution; Description of plants and their economic products; Management and marketing of vegetable and fruit crops; Identification of some fruits and vegetable varieties (citrus, banana, mango, chillies and cucurbits). (4 lectures)
Horticultural techniques: Application of manure, fertilizers, nutrients and PGRs; Weed control; Biofertilizers, biopesticides; Irrigation methods (drip irrigation, surface irrigation, furrow and border irrigation); Hydroponics; Propagation Methods: asexual (grafting, cutting, layering, budding), sexual (seed propagation), Scope and limitations. (6 lectures)

UNIT-III: Landscaping and garden design: Planning and layout (parks and avenues); gardening traditions - Ancient Indian, European, Mughal and Japanese Gardens; Urban forestry; policies and practices. (4 lectures)
Floriculture: Cut flowers, bonsai, commerce (market demand and supply); Importance of flower shows and exhibitions. (4 lectures)

UNIT-IV: Post-harvest technology: Importance of post harvest technology in horticultural crops; Evaluation of quality traits; Harvesting and handling of fruits, vegetables and cut flowers; Principles, methods of preservation and processing; Methods of minimizing loses during storage and transportation; Food irradiation - advantages and disadvantages; food safety. (6 lectures)
Disease control and management: Field and post-harvest diseases; Identification of deficiency symptoms; remedial measures and nutritional management practices; Crop sanitation; IPM strategies (genetic, biological and chemical methods for pest control); Quarantine practices; Identification of common diseases and pests of ornamentals, fruits and vegetable crops. (5 lectures)

UNIT-V: Horticultural crops - conservation and management: Documentation and conservation of germplasm; Role of micropropagation and tissue culture techniques; Varieties and cultivars of various horticultural crops; IPR issues; National, international and professional societies and sources of information on horticulture. (6 lectures)

Field Trip: Field visits to gardens, standing crop sites, nurseries, vegetable gardens and horticul-
tural fields at IARI or other suitable locations.

PRACTICAL

Practical related to theory.

Suggested Readings:

UNIT-I: Basic concepts of research :Research-definition and types of research (Descriptive vs analytical; applied vs fundamental; quantitative vs qualitative; conceptual vs empirical). Research methods vs methodology. Literature-review and its consolidation; Library research; field research; laboratory research. (6 lectures) General laboratory practices: Common calculations in botany laboratories. Understanding the details on the label of reagent bottles. Molarity and normality of common acids and bases. Preparation of solutions. Dilutions. Percentage solutions. Molar, molal and normal solutions. Technique of handling micropipettes; Knowledge about common toxic chemicals and safety measures in their handling. (8 lectures)

UNIT-II: Data collection and documentation of observations: Maintaining a laboratory record; Tabulation and generation of graphs. Imaging of tissuespecimens and application of scale bars. The art of field photography. (4 lectures) Overview of Biological Problems: History; Key biology research areas, Model organisms in biology (A Brief overview): Genetics, Physiology, Biochemistry, Molecular Biology, Cell Biology, Genomics, Proteomics- Transcriptional regulatory network. (4 lectures)

UNIT-III: Methods to study plant cell/tissue structure: Whole mounts, peel mounts, squash preparations, clearing, maceration and sectioning; Tissue preparation: living vs fixed, physical vs chemical fixation, coagulating fixatives, noncoagulant fixatives; tissue dehydration using graded solvent series; Paraffin and plastic infiltration; Preparation of thin and ultrathin sections. (4 lectures)

UNIT-IV: Plant microtechniques: Staining procedures, classification and chemistry of stains. Staining equipment. Reactive dyes and fluorochromes (including genetically engineered protein labeling with GFP and other tags). Cytogenetic techniques with squashed plant materials. (8 lectures)

UNIT-V: The art of scientific writing and its presentation: Numbers, units, abbreviations and nomenclature used in scientific writing. Writing references. Power point presentation. Poster presentation. Scientific writing and ethics, Introduction to copyright-academic misconduct/plagiarism. (6 lectures)

PRACTICAL

1. Experiments based on chemical calculations.
2. Plant microtechnique experiments.
3. The art of imaging of samples through microphotography and field photography.
4. Poster presentation on defined topics.
5. Technical writing on topics assigned.
Suggested Readings:

DSE-3D: INDUSTRIAL & ENVIRONMENTAL MICROBIOLOGY
(Credits-6: Theory-4, Practical-2)-Max. Marks: 100

THEORY (Each class 1 hr.): Marks-70
PRACTICAL (Each class 2 hrs.): Marks-30
Lectures: 60 (40 Theory + 20 Practical classes)

UNIT-I: Scope of microbes in industry and environment: (2 lectures)
Bioreactors/Fermenters and fermentation processes: Solid-state and liquid-state (stationary and submerged) fermentations; Batch and continuous fermentations. Components of a typical bioreactor, Types of bioreactorslaboratory, pilotscale and production fermenters; Constantly stirred tank fermenter, tower fermenter, fixed bed and fluidized bed bioreactors and airlift fermenter. A visit to any educational institute/ industry to see an industrial fermenter, and other downstream processing operations. (8 lectures)

UNIT-II: Microbial production of industrial products: Microorganisms involved, media, fermentation conditions, downstream processing and uses; Filtration, centrifugation, cell disruption, solvent extraction, precipitation and ultrafiltration, lyophilization, spray drying; Hands on microbial fermentations for the production and estimation (qualitative and quantitative) of Enzyme: amylase or lipase activity, Organic acid (citric acid or glutamic acid), alcohol (Ethanol) and antibiotic (Penicillin) (8 lectures)

Microbial enzymes of industrial interest and enzyme immobilization: Microorganisms for industrial applications and hands on screening microorganisms for casein hydrolysis; starch hydrolysis; cellulose hydrolysis. Methods of immobilization, advantages and applications of immobilization, large scale applications of immobilized enzymes (glucose isomerase and penicillin acylase). (6 lectures)

UNIT-III: Microbes and quality of environment: Distribution of microbes in air; Isolation of microorganisms from soil, air and water. (4 lectures)

UNIT-IV: Microbial flora of water: Water pollution, role of microbes in sewage and domestic waste water treatment systems. Determination of BOD, COD, TDS and TOC of water samples; Microorganisms as indicators of water quality, check coliform and fecal coliform in water samples. (6 lectures)

UNIT-V: Microbes in agriculture and remediation of contaminated soils: Biological fixation; Mycorrhizae; Bioremediation of contaminated soils. Isolation of root nodulating bacteria, arbuscular mycorrhizal colonization in plant roots. (6 lectures)
PRACTICAL

1. Principles and functioning of instruments in microbiology laboratory

2. Hands on sterilization techniques and preparation of culture media.

Suggested Readings:

GENERIC ELECTIVE COURSES

GE-1A: INDUSTRIAL & ENVIRONMENTAL MICROBIOLOGY
(Credits-6: Theory-4, Practical-2)-Max. Marks: 100
THEORY (Each class 1 hr.): Marks-70
PRACTICAL (Each class 2 hrs.): Marks-30
Lectures: 60 (40 Theory + 20 Practical classes)

UNIT-I: Microbes: Viruses Discovery, general structure, replication (general account), DNA virus (T-phage); Lytic and lysogenic cycle, RNA virus (TMV); Economic importance; Bacteria Discovery, General characteristics and cell structure; Reproduction vegetative, asexual and recombination (conjugation, transformation and transduction); Economic importance. (8 lectures)

UNIT-II: Algae: General characteristics; Ecology and distribution; Range of thallus organization and reproduction; Classification of algae; Morphology and lifecycles of the following: Nostoc, Chlamydomonas, Oedogonium, Vaucheria, Fucus, Polysiphonia. Economic importance of algae. (10 lectures)
Fungi: Introduction- General characteristics, ecology and significance, range of thallus organization, cell wall composition, nutrition, reproduction and classification; True Fungi- General characteristics, ecology and significance, life cycle of Rhizopus (Zygomycota) Penicillium, Alternaria (Ascomycota), Puccinia, Agaricus (Basidiomycota); Symbiotic Associations-Lichens: (6 lectures)

UNIT-III: Introduction to Archegoniate: Unifying features of archegoniates, Transition to land habit, Alternation of generations. (2 lectures)
Bryophytes: General characteristics, adaptations to land habit, Classification, Range of thallus organization. Classification (up to family), morphology, anatomy and reproduction of Marchantia and Funaria. (Developmental details not to be included). Ecology and economic importance of bryophytes with special mention of Sphagnum. (6 lectures)

UNIT-IV: Pteridophytes: General characteristics, classification, Early land plants (Cooksonia and Rhynia). Classification (up to family), morphology, anatomy and reproduction of Selaginella, Equisetum and Pteris. (Developmental details not to be included). Heterospory and seed habit, stellar evolution. Ecological and economical importance of Pteridophytes. (5 lectures)

UNIT-V: Gymnosperms: General characteristics, classification. Classification (up to family), morphology, anatomy and reproduction of Cycas and Pinus. (Developmental details not to be included). Ecological and economical importance. (6 lectures)

PRACTICAL

1. EMs/Models of viruses T-Phage and TMV, Line drawing/Photograph of Lytic and Lysogenic Cycle.

2. Types of Bacteria from temporary/permanent slides/photographs; EM bacterium; Binary Fission; Conjugation; Structure of root nodule.

83
3. Gram staining.

4. Study of vegetative and reproductive structures of Nostoc, Chlamydomonas (electron micrographs), Oedogonium, Vaucheria, *Fucus* and Polysiphonia through temporary preparations and permanent slides. (*: Fucus - Specimen and permanent slides)

5. Rhizopus and Penicillium: Asexual stage from temporary mounts and sexual structures through permanent slides.

7. Puccinia: Herbarium specimens of Black Stem Rust of Wheat and infected Barberry leaves; section/tease mounts of spores on Wheat and permanent slides of both the hosts.

8. Agaricus: Specimens of button stage and full grown mushroom; Sectioning of gills of Agaricus.

9. Lichens: Study of growth forms of lichens (crustose, foliose and fruticose)

10. Mycorrhiza: ecto mycorrhiza and endo mycorrhiza (Photographs)

11. Marchantia- morphology of thallus, w.m. rhizoids and scales, v.s. thallus through gemma cup, w.m. gemmae (all temporary slides), v.s. antheridiophore, archegoniophore, l.s. sporophyte (all permanent slides).

12. Funaria- morphology, w.m. leaf, rhizoids, operculum, peristome, annulus, spores (temporary slides); permanent slides showing antheridial and archegonial heads, l.s. capsule and protonema.

13. Selaginella- morphology, w.m. leaf with ligule, t.s. stem, w.m. strobilus, w.m. microsporophyll and megasporophyll (temporary slides), l.s. strobilus (permanent slide).

14. Equisetum- morphology, t.s. internode, l.s. strobilus, t.s. strobilus, w.m. sporangiophore, w.m. spores (wet and dry) (temporary slides); t.s rhizome (permanent slide).

15. Pteris- morphology, t.s. rachis, v.s. sporophyll, w.m. sporangium, w.m. spores (temporary slides), t.s. rhizome, w.m. prothallus with sex organs and young sporophyte (permanent slide).

16. Cycas- morphology (coralloid roots, bulbil, leaf), t.s. coralloid root, t.s. rachis, v.s. leaflet, v.s. microsporophyll, w.m. spores (temporary slides), l.s. ovule, t.s. root (permanent slide).

17. Pinus- morphology (long and dwarf shoots, w.m. dwarf shoot, male and female), w.m. dwarf shoot, t.s. needle, t.s. stem, l.s./t.s. male cone, w.m. microsporophyll, w.m. microspores (temporary slides), l.s. female cone, t.l.s. & r.l.s. stem (permanent slide).

Suggested Readings:

GE-1B: PLANT ECOLOGY & TAXONOMY
(Credits-6: Theory-4, Practical-2)-Max. Marks: 100

THEORY (Each class 1 hr.): Marks-70
PRACTICAL (Each class 2 hrs.): Marks-30
Lectures: 60 (40 Theory + 20 Practical classes)

UNIT-I: Introduction: (2 lectures)
Plant communities: Characters; Ecotone and edge effect; Succession; Processes and types (3 lectures)

UNIT-II: Ecosystem: Structure; Biotic and abiotic components, energy flow trophic organisation; Food chains and food webs, Ecological pyramids production and productivity; Biogeochemical cycling; Cycling of carbon, nitrogen and Phosphorous (6 lectures)
Phytogeography: Principle biogeographical zones; Endemism (2 lectures)

UNIT-III: Introduction to plant taxonomy: Identification, Classification, Nomenclature. (2 lectures)
Identification: Functions of Herbarium, important herbaria and botanical gardens of the world and India; Documentation: Flora, Keys: single access and multi-access (3 lectures)

UNIT-IV: Taxonomic evidences from palynology, cytology, phytochemistry and molecular Data: (4 lectures)
Taxonomic hierarchy: Ranks, categories and taxonomic groups 2 lectures Biometrics, numerical taxonomy and cladistics: Characters; variations; OTUs, character weighting and coding; cluster analysis; phenograms, cladograms (definitions and differences). (5 lectures)

UNIT-V: Botanical nomenclature: Principles and rules (ICN); ranks and names; binominal system, typification, author citation, valid publication, rejection of names, principle of priority and its limitations. (4 lectures)
Classification: Types of classification-artificial, natural and phylogenetic. Bentham and Hooker (upto series), Engler and Prantl (upto series). (5 lectures)

PRACTICAL

1. Study of instruments used to measure microclimatic variables: Soil thermometer, maximum and minimum thermometer, anemometer, psychrometer/hygrometer, rain gauge and lux meter.

2. Determination of pH, and analysis of two soil samples for carbonates, chlorides, nitrates, sulphates, organic matter and base deficiency by rapid field test.

3. Comparison of bulk density, porosity and rate of infiltration of water in soil of three habitats.

4. (a) Study of morphological adaptations of hydrophytes and xerophytes (four each).
 (b) Study of biotic interactions of the following: Stem parasite (Cuscuta), Root parasite (Orobanche), Epiphytes, Predation (Insectivorous plants).

5. Determination of minimal quadrat size for the study of herbaceous vegetation in the college campus by species area curve method. (species to be listed)

6. Quantitative analysis of herbaceous vegetation in the college campus for frequency and comparison with Raunkiaers frequency distribution law

7. Study of vegetative and floral characters of the following families (Description, V.S. flower, section of ovary, floral diagram/s, floral formula/e and systematic position according to Bentham & Hookers system of classification): Brassicaceae - Brassica, Alyssum / Iberis; Asteraceae - Sonchus/Launaea, Vernonia/Ageratum, Eclipta/Tridax; Solanaceae - Solanum nigrum, Withania; Lamiaceae - Salvia, Ocimum; Liliaceae - Asphodelus / Lilium / Allium.

8. Mounting of a properly dried and pressed specimen of any wild plant with herbarium label (to be submitted in the record book).

Suggested Readings:

GE-2: PLANT PHYSIOLOGY & METABOLISM
(Credits-6: Theory-4, Practical-2)-Max. Marks: 100
THEORY (Each class 1 hr.): Marks-70
PRACTICAL (Each class 2 hrs.): Marks-30
Lectures: 60 (40 Theory + 20 Practical classes)

UNIT-I: Introduction: (2 lectures)
Meristematic and permanent tissues: Root and shoot apical meristems; Simple and complex tissues (5 lectures)
Organs: Structure of dicot and monocot root stem and leaf. (3 lectures)

UNIT-II: Secondary Growth: Vascular cambium structure and function, seasonal activity. Secondary growth in root and stem, Wood (heartwood and sapwood) (6 lectures)(
Adaptive and protective systems: Epidermis, cuticle, stomata; General account of adaptations in xerophytes and hydrophytes. (5 lectures)

UNIT-III: Structural organization of flower: Structure of anther and pollen; Structure and types of ovules; Types of embryo sacs, organization and ultrastructure of mature embryo sac. (5 lectures)
Pollination and fertilization: Pollination mechanisms and adaptations; Double fertilization; Seed-structure appendages and dispersal mechanisms. (6 lectures)

UNIT-IV: Embryo and endosperm: Endosperm types, structure and functions; Dicot and monocot embryo; Embryo endosperm relationship (5 lectures)

UNIT-V: Apomixis and polyembryony: Definition, types and Practical applications. (5 lectures)

PRACTICAL

1. Study of meristems through permanent slides and photographs.

2. Tissues (parenchyma, collenchyma and sclerenchyma); Macerated xylary elements, Phloem (Permanent slides, photographs)

5. Leaf: Dicot and Monocot leaf (only Permanent slides).

6. Adaptive anatomy: Xerophyte (Nerium leaf); Hydrophyte (Hydrilla stem).

7. Structure of anther (young and mature), tapetum (amoeboid and secretory) (Permanent slides).
8. Types of ovules: anatropous, orthotropous, circinotropous, amphitropous/ campylotropous.

10. Ultrastructure of mature egg apparatus cells through electron micrographs.

11. Pollination types and seed dispersal mechanisms (including appendages, aril, caruncle) (Photographs and specimens).

12. Dissection of embryo/endosperm from developing seeds.

13. Calculation of percentage of germinated pollen in a given medium.

Suggested Readings:

GE-4A: ECONOMIC PLANT ANATOMY & EMBRYOLOGY
(Credits-6: Theory-4, Practical-2)-Max. Marks: 100
THEORY (Each class 1 hr.): Marks-70
PRACTICAL (Each class 2 hrs.): Marks-30
Lectures: 60 (40 Theory + 20 Practical classes)

UNIT-I: Plant-water relations: Importance of water, water potential and its components; Transpiration and its significance; Factors affecting transpiration; Root pressure and guttation. (4 lectures)
Mineral nutrition: Essential elements, macro and micronutrients; Criteria of essentiality of elements; Role of essential elements; Transport of ions across cell membrane, active and passive transport, carriers, channels and pumps. (4 lectures)
Translocation in phloem.: Composition of phloem sap, girdling experiment; Pressure flow model; Phloem loading and unloading (4 lectures)

UNIT-II: Photosynthesis: Photosynthetic Pigments (Chl a, b, xanthophylls, carotene); Photosystem I and II, reaction center, antenna molecules; Electron transport and mechanism of ATP synthesis; C3, C4 and CAM pathways of carbon fixation; Photorespiration. (8 lectures)

UNIT-III: Respiration : Glycolysis, anaerobic respiration, TCA cycle; Oxidative phosphorylation, Glyoxylate, Oxidative Pentose Phosphate Pathway. (4 lectures)

UNIT-IV: Enzymes: Structure and properties; Mechanism of enzyme catalysis and enzyme inhibition. (3 lectures)
Nitrogen metabolism : Biological nitrogen fixation; Nitrate and ammonia assimilation. (3 lectures)

UNIT-V: Plant growth regulators :Discovery and physiological roles of auxins, gibberellins, cytokinins, ABA, ethylene. (5 lectures)
Plant response to light and temperature: Photoperiodism (SDP, LDP, Day neutral plants); Phytochrome (discovery and structure), red and far red light responses on photomorphogenesis; Vernalization. (5 lectures)

PRACTICAL

1. Determination of osmotic potential of plant cell sap by plasmolytic method.

2. To study the effect of two environmental factors (light and wind) on transpiration by excised twig.

3. Calculation of stomatal index and stomatal frequency of a mesophyte and a xerophyte.

4. Demonstration of Hill reaction.

5. Demonstrate the activity of catalase and study the effect of pH and enzyme concentration.

6. To study the effect of light intensity and bicarbonate concentration on O_2 evolution in photosynthesis.

7. Comparison of the rate of respiration in any two parts of a plant.

8. Separation of amino acids by paper chromatography.

Demonstration experiments (any four):

(a) Bolting.

(b) Effect of auxins on rooting.

(c) Suction due to transpiration.

(d) R.Q.

(e) Respiration in roots.

Suggested Readings:

GE-4B: BOTANY & PLANT BIO-TECHNOLOGY

(Credits-6: Theory-4, Practical-2)-Max. Marks: 100

THEORY (Each class 1 hr.): Marks-70

PRACTICAL (Each class 2 hrs.): Marks-30

Lectures: 60 (40 Theory + 20 Practical classes)
UNIT-I: Origin of Cultivated Plants: Concept of centres of origin, their importance with reference to Vavilov’s work. (3 lectures)

UNIT-II: Cereals: Wheat -Origin, morphology, uses 3 lectures Legumes : General account with special reference to Gram and soybean (4 lectures)

UNIT-III: Spices : General account with special reference to clove and black pepper (Botanical name, family, part used, morphology and uses) (4 lectures)
Beverages: Tea (morphology, processing, uses) (3 lectures)

UNIT-IV: Oils and Fats : General description with special reference to groundnut 3 lectures Fibre Yielding Plants: General description with special reference to Cotton (Botanical name, family, part used,morphology and uses) (3 lectures)

UNIT-V: Introduction to biotechnology (2 lectures)
Plant tissue culture: Micropropagation ; haploid production through androgenesis and gynogenesis; brief account of embryo and endosperm culture with their applications, Gene cloning by recombinant DNA technology, transgenic plants. (6 lectures)
Molecular Techniques: Blotting techniques: Northern, Southern and Western Blotting, DNA Fingerprinting; Molecular DNA markers i.e. RAPD, RFLP, SNPs; DNA sequencing, PCR and Reverse Transcriptase-PCR. Hybridoma and monoclonal antibodies, ELISA and Immunodetection.Molecular diagnosis of human disease, Human gene Therapy. (9 lectures)

PRACTICAL

1. Study of economically important plants : Wheat, Gram, Soybean, Black pepper, Clove Tea, Cotton, Groundnut through specimens, sections and microchemical tests

2. Familiarization with basic equipments in tissue culture.

3. Study through photographs: Anther culture, somatic embryogenesis, endosperm and embryo culture; micropropagation.

4. Study of molecular techniques: PCR, Blotting techniques, AGE and PAGE.

Suggested Readings:

GE-V: ENVIRONMENTAL BIO-TECHNOLOGY
(Credits-6: Theory-4, Practical-2)-Max. Marks: 100
THEORY (Each class 1 hr.): Marks-70
PRACTICAL (Each class 2 hrs.): Marks-30
Lectures: 60 (40 Theory + 20 Practical classes)

UNIT-I: Environment - basic concepts and issues, global environmental problems ozone depletion, UV-B, greenhouse effect and acid rain due to anthropogenic activities, their impact and biotechnological approaches for management. (4 lectures)

An overview of atmosphere, hydrosphere, lithosphere and anthrosphere - environmental problems. Environmental pollution - types of pollution, sources of pollution, measurement of pollution, Bio-concentration, bio/geomagnification. (4 lectures)

UNIT-II: Microbiology of waste water treatment, aerobic process - activated sludge, oxidation ponds, trickling filter, towers, rotating discs, rotating drums, oxidation ditch. Anaerobic process - anaerobic digestion, anaerobic filters, up-flow anaerobic sludge blanket reactors. Treatment schemes for waste waters of dairy, distillery, tannery, sugar and antibiotic industries. (6 lectures)

UNIT-III: Xenobiotic compounds - organic (chlorinated hydrocarbons, substituted simple aromatic compounds, poly-aromatic hydrocarbons, pesticides, surfactants) and inorganic (metals, radionuclides, phosphates, nitrates). Bio-remediation of xenobiotics in environment - ecological consideration, decay behavior and degradative plasmids, molecular techniques in bio-remediation. (6 lectures)

UNIT-IV: Sustainable Development: Economics and Environment: Economic growth, Gross National Productivity and the quality of life, Tragedy of Commons, Economics of Pollution control, Cost-benefit and cost effectiveness analysis, WTO and Environment, Corporate Social Responsibility, Environmental awareness and Education; Environmental Ethics. (6 lectures)

Public Participation for Environmental Protection: Environmental movement and peoples participation with special references to Gandhamardan, Chilika and Narmada Bachao Andolan, Chipko and Silent valley Movement; Women and Environmental Protection, Role of NGO in bringing environmental awareness and education in the society. (4 lectures)

PRACTICAL

1. Water/Soil analysis-DO, salinity, pH, chloride, total hardness, alkalinity, acidity, nitrate, cal-
cium, Magnesium and phosphorus.

2. Gravimetric analysis-Total solid, dissolved solid, suspended solid in an effluent

3. Microbial assessment of air (open plate and air sample) and water.

Suggested Readings:

SKILL ENHANCEMENT COURSES (SEC)

SEC-I: BIO-FERTILIZERS
(Credits-2: Lectures: 30)
THEORY (Each class 1 hr.)-Marks: 50.

Unit-I: General account about the microbes used as biofertilizer Rhizobium isolation, identification, mass multiplication, carrier based inoculants, Actinorrhizal symbiosis. (4 lectures)

Unit-II: Azospirillum: isolation and mass multiplication carrier based inoculant, associative effect of different microorganisms. Azotobacter: classification, characteristics crop response to Azotobacter inoculum, maintenance and mass multiplication. (8 lectures)

Unit-III: Cyanobacteria (blue green algae), Azolla and Anabaena azollae association, nitrogen fixation, factors affecting growth, blue green algae and Azolla in rice cultivation. (4 lectures)

Unit-IV: Mycorrhizal association, types of mycorrhizal association, taxonomy, occurrence and distribution, phosphorus nutrition, growth and yield colonization of VAM isolation and inoculum production of VAM, and its influence on growth and yield of crop plants. (8 lectures)

Unit-V: Organic farming Green manuring and organic fertilizers, Recycling of biodegradable municipal, agricultural and Industrial wastes bio-compost making methods, types and method of vermicomposting field Application. (6 lectures)

Suggested Readings:

SEC-II: HERBAL TECHNOLOGY
(Credits-2: Lectures: 30)
THEORY (Each class 1 hr.)-Marks: 50.

Unit-I: Herbal medicines: history and scope - definition of medical terms - role of medicinal plants in Siddha systems of medicine; cultivation - harvesting - processing - storage - marketing and utilization of medicinal plants. (6 lectures)
Unit-II: Pharmacognosy - systematic position medicinal uses of the following herbs in curing various ailments; Tulsi, Ginger, Fenugreek, Indian Goose berry and Ashoka. (6 lectures)

Unit-III: Phytochemistry - active principles and methods of their testing - identification and utilization of the medicinal herbs; Catharanthus roseus (cardiotonic), Withania somnifera (drugs acting on nervous system), Clerodendron phlomoides (anti-rheumatic) and Centella asiatica (memory booster). (6 lectures)

Unit-IV: Analytical pharmacognosy: Drug adulteration - types, methods of drug evaluation - Biological testing of herbal drugs - Phytochemical screening tests for secondary metabolites (alkaloids, flavonoids, steroids, triterpenoids, phenolic compounds) (8 lectures)

Unit-V: Medicinal plant banks micro propagation of important species (Withania somnifera, neem and tulsi- Herbal foods-future of pharmacognosy) (4 lectures)

Suggested Readings:

SEC-III: NURSERY & GARDENING
(Credits-2: Lectures: 30)

THEORY (Each class 1 hr.)-Marks: 50.

Unit-I: Nursery: definition, objectives and scope and building up of infrastructure for nursery, planning and seasonal activities - Planting - direct seeding and transplants. (4 lectures)

Unit-II: Seed: Structure and types - Seed dormancy; causes and methods of breaking dormancy - Seed storage: Seed banks, factors affecting seed viability, genetic erosion Seed production technology - seed testing and certification. (6 lectures)

Unit-III: Vegetative propagation: air-layering, cutting, selection of cutting, collecting season, treatment of cutting, rooting medium and planting of cuttings - Hardening of plants green house - mist chamber, shed root, shade house and glass house. (6 lectures)

Unit-IV: Gardening: definition, objectives and scope - different types of gardening landscape and home gardening - parks and its components - plant materials and design computer applications
in landscaping - Gardening operations: soil laying, manuring, watering, management of pests and diseases and harvesting. (8 lectures)

Unit-V: Sowing/raising of seeds and seedlings - Transplanting of seedlings - Study of cultivation of different vegetables: cabbage, brinjal, ladys finger, onion, garlic, tomatoes, and carrots - Storage and marketing procedures. (6 lectures)

Suggested Readings:

SEC-IV: FLORICULTURE
(Credits-2: Lectures: 30)
THEORY (Each class 1 hr.)-Marks: 50.

Unit-I: Introduction: History of gardening; Importance and scope of floriculture and landscape gardening. (2 lectures)

Unit-II: Nursery Management and Routine Garden Operations: Sexual and vegetative methods of propagation; Soil sterilization; Seed sowing; Pricking; Planting and transplanting; Shading; Stopping or pinching; Defoliation; Wintering; Mulching; Topiary; Role of plant growth regulators. (8 lectures)

Unit-III: Ornamental Plants: Flowering annuals; Herbaceous perennials; Divine vines; Shade and ornamental trees; Ornamental bulbous and foliage plants; Cacti and succulents; Palms and Cycads; Ferns and Selaginellas; Cultivation of plants in pots; Indoor gardening; Bonsai. (4 lectures)

Unit-IV: Principles of Garden Designs: English, Italian, French, Persian, Mughal and Japanese gardens; Features of a garden (Garden wall, Fencing, Steps, Hedge, Edging, Lawn, Flower beds, Shrubbery, Borders, Water garden. Some Famous gardens of India (4 lectures)
Landscaping Places of Public Importance: Landscaping highways and Educational institutions. (4 lectures)

Unit-V: Commercial Floriculture: Factors affecting flower production; Production and packaging of cut flowers; Flower arrangements; Methods to prolong vase life; Cultivation of Important cut flowers (Carnation, Aster, Chrysanthemum, Dahlia, Gerbera, Gladiolous, Marigold, Rose, Lilium, Orchids). (6 lectures)
Diseases and Pests of Ornamental Plants. (2 lectures)
Suggested Readings:

SEC-V: MEDICAL BOTANY
(Credits-2: Lectures: 30)
THEORY (Each class 1 hr.)-Marks: 50.

Unit-I: History, Scope and Importance of Medicinal Plants. Indigenous Medicinal Sciences; Definition and Scope-Ayurveda: History, origin, panchamahabhutas, saptadhatu and tridosha concepts, Rasayana, plants used in ayurvedic treatments. (5 lectures)

Unit-II: Siddha: Origin of Siddha medicinal systems, Basis of Siddha system, plants used in Siddha medicine. Unani: History, concept: Umoor-e- tabiya, tumors treatments/ therapy, polyherbal formulations. (5 lectures)

Unit-III: Conservation of endangered and endemic medicinal plants. Definition: endemic and endangered medicinal plants, Red list criteria; In situ conservation: Biosphere reserves, sacred groves, National Parks; Ex situ conservation: Botanic Gardens, Ethno medicinal plant Gardens. (6 lectures)

Unit-IV: Propagation of Medicinal Plants: Objectives of the nursery, its classification, important components of a nursery, sowing, pricking, use of green house for nursery production, propagation through cuttings, layering, grafting and budding. (6 lectures)

Unit-V: Ethnobotany and Folk medicines. Definition; Ethnobotany in India: Methods to study ethnobotany; Applications of Ethnobotany: National interacts, Palaeo-ethnobotany. Folk medicines of ethnobotany, ethno medicine, ethno ecology, ethnic communities of India. Application of natural products to certain diseases- Jaundice, cardiac, infertility, diabetics, Blood pressure and skin diseases. (8 lectures)

Suggested Readings:

SEC-VI: PLANT DIVERSITY & HUMAN WELFARE
(Credits-2: Lectures: 30)
THEORY (Each class 1 hr.)-Marks: 50.

Unit-I: Plant diversity and its scope- Genetic diversity, Species diversity, Plant diversity at the ecosystem level, Agro-bio-diversity and cultivated plant taxa, wild taxa. Values and uses of Biodiversity: Ethical and aesthetic values, Precautionary principle, Methodologies for valuation, Uses of plants, Uses of microbes. (6 lectures)

Unit-III: Management of Plant Bio-diversity: Organizations associated with bio-diversity management-Methodology for execution-IUCN, UNEP, UNESCO, WWF, NBPGR; Bio-diversity legislation and conservations, Bio-diversity information management and communication. (6 lectures)

Unit-IV: Conservation of Bio-diversity: Conservation of genetic diversity, species diversity and ecosystem diversity, In situ and ex situ conservation, Social approaches to conservation, Bio-diversity awareness programmes, Sustainable development. (6 lectures)

Unit-V: Role of plants in relation to Human Welfare: (a) Importance of forestry their utilization and commercial aspects (b) Avenue trees. (c) Ornamental plants of India. (d) Alcoholic beverages through ages. Fruits and nuts: Important fruit crops their commercial importance. Wood and its uses. (6 lectures)

Suggested Readings:

SEC-VII: ETHNOBOTANY
(Credits-2: Lectures: 30)
THEORY (Each class 1 hr.):-Marks: 50.

Unit-I: Introduction, concept, scope and objectives; Ethnobotany as an interdisciplinary science. The relevance of ethnobotany in the present context; Major and minor ethnic groups or Tribals of India, and their life styles. Plants used by the tribals: (a) Food plants. (b) intoxicants and beverages c) Resins and oils and miscellaneous uses. (6 lectures)

Unit-II: Methodology of Ethnobotanical studies: (a) Field work. (b) Herbarium. (c) Ancient Literature. (d) Archaeological findings. (e) Temples and sacred places. (6 lectures)

Unit-III: Role of ethnobotany in modern Medicine Medico-ethnobotanical sources in India; Significance of the following plants in ethno botanical practices (along with their habitat and morphology) (a) Azadiractha indica. (b) Ocimum sanctum. (c) Vitex negundo. (d) Gloriosa superba e) Tribulus terrestris. (f) Pongamia pinnata. (g) Cassia auriculata. (h) Indigofera tinctoria. Role of ethnobotany in modern medicine with special example Rauvolfia sepentina, Trichopus zeylanicus, Artemisia, Withania. (8 lectures)

Unit-IV: Role of ethnic groups in conservation of plant genetic resources. Endangered taxa and forest management (participatory forest management). (4 lectures)

Unit-V: Ethnobotany and legal aspects Ethnobotany as a tool to protect interests of ethnic groups. Sharing of wealth concept with few examples from India. Biopiracy, Intellectual Property Rights and Traditional Knowledge. (6 lectures)

Suggested Readings:
3. Lone et al., Palaeoethnobotany

SEC-VIII: MUSHROOM CULTURE TECHNOLOGY
(Credits-2: Lectures: 30)
THEORY (Each class 1 hr.)-Marks: 50.

Unit-I: Introduction, history. Nutritional and medicinal value of edible mushrooms; Poisonous mushrooms. Types of edible mushrooms available in India - Volvariella volvacea, Pleurotus citrinopileatus, Agaricus bisporus. (5 lectures)

Unit-II: Cultivation Technology: Infrastructure: substrates (locally available) Polythene bag, vessels, Inoculation hook, inoculation loop, low cost stove, sieves, culture rack, mushroom unit (Thatched house) water sprayer, tray, small polythene bag. (6 Lectures)

Unit-III: Pure culture: Medium, sterilization, preparation of spawn, multiplication. Mushroom bed preparation - paddy straw, sugarcane trash, maize straw, banana leaves. Factors affecting the mushroom bed preparation - Low cost technology, Composting technology in mushroom production. (6 lectures)

Unit-IV: Storage and nutrition: Short-term storage (Refrigeration - upto 24 hours) Long term Storage (canning, pickles, papads), drying, storage in saltsolutions. Nutrition - Proteins - amino acids, mineral elements nutrition - Carbohydrates, Crude fibre content - Vitamins. (8 lectures)

Unit-V: Food Preparation: Types of foods prepared from mushroom. Research Centres - National level and Regional level. Cost benefit ratio - Marketing in India and abroad, Export Value. (5 lectures)

Suggested Readings:

SEC-IX: INTELLECTUAL PROPERTY RIGHTS
(Credits-2: Lectures: 30)
THEORY (Each class 1 hr.)-Marks: 50.

Unit-I: Introduction to intellectual property right (IPR) : Concept and kinds. Economic importance. IPR in India and world: Genesis and scope, some important examples. IPR and WTO (TRIPS, WIPO). (2 lectures)
Copyrights: Introduction, Works protected under copyright law, Rights, Transfer of Copyright, Infringement. (3 Lectures)

Unit-II: Trademarks: Objectives, Types, Rights, Protection of goodwill, Infringement, Passing off, Defences, Domain name. (3 Lectures)
Geographical Indications: Objectives, Justification, International Position, Multilateral Treaties, National Level, Indian Position. (3 Lectures)

Unit-III: Protection of Traditional Knowledge: Objective, Concept of Traditional Knowledge, Holders, Issues concerning, Bio-Prospecting and Bio-Piracy, Alternative ways, Protectability, need for a Sui-Generis regime, Traditional Knowledge on the International Arena, at WTO, at National level, Traditional Knowledge Digital Library. (4 Lectures)

Unit-V: Industrial Designs: Objectives, Rights, Assignments, Infringements, Defences of Design Infringement (2 Lectures)
Unit-I: Introduction to microbial world, microbial nutrition, growth and metabolism. (2 lectures) Viruses: Discovery, physiochemical and biological characteristics; classification (Baltimore), general structure with special reference to viroids and prions; replication (general account), DNA virus (T-phage), lytic and lysogenic cycle; RNA virus (TMV). Economic importance of viruses with reference to vaccine production. (5 lectures)

Unit-II: Bacteria: Discovery, general characteristics, types-archaebacteria, eubacteria, cell structure, reproduction-vegetative, asexual and recombination (conjugation, transformation and transduction). Economic importance of bacteria with reference to their role in agriculture and industry (fermentation and medicine). (5 lectures)

Unit-III: Algae: General characteristics; Ecology and distribution; range of thallus organization; Cell structure and components; cell wall, pigment system, reserve food (of only groups represented in the syllabus), flagella; and methods of reproduction. (6 lectures)

Unit-IV: Cyanophyta: Ecology and occurrence, range of thallus organization, cell structure, heterocyst, reproduction. Economic importance; role in biotechnology. (5 lectures) Chlorophyta: General characteristics, occurrence, cell structure and reproduction. Morphology and life-cycles of Chlamydomonas, Volvox, Oedogonium. (5 lectures)

Unit-V: Charophyta: General characteristics; occurrence, morphology, cell structure and life-cycle of Chara. (2 lectures) Xanthophyta: General characteristics; Occurrence, morphology and lifecycle of Vaucheria. (3 lectures) Phaeophyta: Characteristics, occurrence, cell structure and reproduction. Morphology and life-cycles of Ectocarpus and Fucus. (3 lectures) Rhodophyta: General characteristics, occurrence, cell structure and reproduction. Morphology and life-cycle of Polysiphonia. 4 lectures

PRACTICAL

Microbiology:

1. Electron micrographs/Models of viruses T-Phage and TMV, Line drawings/ Photographs of Lytic and Lysogenic Cycle.
2. Types of Bacteria to be observed from temporary/permanent slides/photographs. Electron micrographs of bacteria, binary fission, endospore, conjugation, root Nodule.

3. Gram staining.

4. Endospore staining with malachite green using the (endospores taken from soil bacteria).

Phycology:
5. Study of vegetative and reproductive structures of Nostoc, Chlamydomonas (electron micrographs), Volvox, Oedogonium, Coleochaete, Chara, Vaucheria, Ectocarpus, Fucus and Polysiphonalia, Prochloron through electron micrographs, temporary preparations and permanent slides.

Suggested Readings:

C-2: BIOMOLECULES & CELL BIOLOGY
(Credits-6: Theory-4, Practical-2)-Max. Marks: 100
THEORY (Each class 1 hr.): Marks-70
PRACTICAL (Each class 2 hrs.): Marks-30
Lectures: 60 (40 Theory + 20 Practical classes)

Unit-I: Biomolecules:- Types and significance of chemical bonds; Structure and properties of water; pH and buffers. (2 lectures)
Carbohydrates: Nomenclature and classification; Role of monosaccharides (glucose, fructose, sugar alcohols mannitol and sorbitol); Disaccharides (sucrose, maltose, lactose), Oligosaccharides and polysaccharides. (3 lectures)
Lipids: Definition and major classes of storage and structural lipids. Storage lipids. Fatty acids structure and functions. Essential fatty acids. Triacyl glycerols structure. (2 lectures)
Proteins: Structure of amino acids; Peptide bonds; Levels of protein structure-primary, secondary, tertiary and quartenary. (2 lectures)
Nucleic acids: Structure of nitrogenous bases; Structure and function of nucleotides; Types of nucleic acids; Structure of B, Z types of DNA; Types of RNA. (4 lectures)

Unit-II: Bioenergetics: Laws of thermodynamics, concept of free energy, endergonic and exergonic reactions, coupled reactions, redox reactions. ATP: structure, its role as a energy currency molecule. (3 lectures)
Enzymes: Structure of enzyme: holoenzyme, apoenzyme, cofactors, coenzymes and prosthetic group; Classification of enzymes; Features of active site, substrate specificity, mechanism of action (activation energy, lock and key hypothesis, induced - fit theroy), Michaelis Menten equation, enzyme inhibition and factors affecting enzyme activity. (4 lectures)

Unit-III: The cell: Cell as a unit of structure and function; Characteristics of prokaryotic and eukaryotic cells. (2 lectures)
Cell wall and plasma membrane: Chemistry, structure and function of Plant Cell Wall. Overview of membrane function; fluid mosaic model; Chemical composition of membranes; Membrane transport Passive, active and facilitated transport, endocytosis and exocytosis. (3 lectures)

Unit-IV: Cell organelles: Nucleus; Structure-nuclear envelope, nuclear pore complex, nuclear lamina, nucleolus. 3 lectures Cytoskeleton: Role and structure of microtubules, microfilaments and intermediary filament. (2 lectures)
Chloroplast, mitochondria and peroxisomes: Structural organization; Function; Semiautonomous nature of mitochondria and chloroplast. (2 lectures)
Endoplasmic Reticulum, Golgi Apparatus, Lysosomes (2 lectures)

Unit-V: Cell division: Eukaryotic cell cycle, different stages of mitosis and meiosis. Cell cycle, Regulation of cell cycle. (6 lectures)

PRACTICAL
1. Qualitative tests for carbohydrates, reducing sugars, non-reducing sugars, lipids and proteins.
2. Study of plant cell structure with the help of epidermal peel mount of Onion/Rhoeo/Crinum.
3. Demonstration of the phenomenon of protoplasmic streaming in Hydrilla leaf.
4. Measurement of cell size by the technique of micrometry.
5. Counting the cells per unit volume with the help of haemocytometer. (Yeast/pollen grains).
6. Study of cell and its organelles with the help of electron micrographs.
7. Study the phenomenon of plasmolysis and deplasmolysis.
8. Study different stages of mitosis and meiosis using aceto carmine and aceto orcine method.

Suggested Readings:

C-3: MYCOLOGY & PHYTOPATHOLOGY
(Credits-6: Theory-4, Practical-2)-Max. Marks: 100

THEORY (Each class 1 hr.): Marks-70
PRACTICAL (Each class 2 hrs.): Marks-30
Lectures: 60 (40 Theory + 20 Practical classes)

Unit-I: Introduction to true fungi: Definition, General characteristics; Affinities with plants and animals; Thallus organization; Cellwall composition; Nutrition; Classification. Chytridiomycetes: General account (5 lectures)

Zygomycota: General characteristics; Ecology; Thallus organisation; Life cycle with reference to Rhizopus. (4 lectures)

Ascomycota: General characteristics (asexual and sexual fruiting bodies); Ecology; Life cycle, heterokaryosis and parasexuality; life cycle and classification with reference to Saccharomyces, Aspergillus, Penicillium, Alternaria and Neurospora, Peziza. (5 lectures)

Unit-II: Basidiomycota: General characteristics; Ecology; Life cycle and Classification with reference to black stem rust on wheat Puccinia (Physiological Specialization), loose and covered smut (symptoms only), Agaricus; Bioluminescence, Fairy Rings and Mushroom Cultivation. (8 lectures)

Oomycota: General characteristic; Ecology; Life cycle and classification with reference to Phytophthora, Albigo. (4 lectures)

Unit-III: Symbiotic associations: Lichen Occurrence; General characteristics; Nature of associations of algal and fungal partners; Reproduction. (4 lectures)

Unit-IV: Applied Mycology: Role of fungi in biotechnology, Application of fungi in food industry (Flavour & texture, Fermentation, Baking, Organic acids, Enzymes, Mycoproteins); Secondary metabolites (Pharmaceutical preparations); Agriculture (Biofertilizers); Mycotoxins; Biological control. (5 Lectures)

Unit-V: Phytopathology: General symptoms; Geographical distribution of diseases; etiology; symptomology; Host- Pathogen relationships; prevention and control of plant diseases, and role of quarantine. Bacterial diseases Citrus canker and angular leaf spot disease of Cotton. Viral diseases Tobacco Mosaic viruses, vein clearing. Fungal diseases Early blight of potato, white rust of crucifers. (5 lectures)
PRACTICAL

1. Introduction to the world of fungi (Unicellular, coenocytic/septate mycelium, asocarps & basidiocarps).

2. Rhizopus: study of asexual stage from temporary mounts and sexual structures through permanent slides.

3. Aspergillus and Penicillium: study of asexual stage from temporary mounts. Study of Sexual stage from permanent slides/photographs.

4. Peziza: sectioning through ascocarp.

5. Alternaria: Specimens/photographs and temporary mounts.

6. Puccinia: Herbarium specimens of Black Stem Rust of Wheat and infected Barberryleaves; sections/mounts of spores on wheat and permanent slides of both the hosts.

7. Agaricus: Specimens of button stage and full grown mushroom; sectioning of gills of Agaricus, fairy rings and bioluminescent mushrooms to be shown.

8. Albugo: Study of symptoms of plants infected with Albugo; asexual phase study throughsection/temporary mounts and sexual structures through permanent slides.

9. Lichens: Study of growth forms of lichens (crustose, foliose and fruticose) on different substrates. Study of thallus and reproductive structures (soredia and apothecium) through permanent slides. Mycorrhizae: ectomycorrhiza and endo mycorrhiza (Photographs)

Suggested Readings:

C-4: ARCHEGONIATE

(Credits-6: Theory-4, Practical-2)-Max. Marks: 100

THEORY (Each class 1 hr.): Marks-70

PRACTICAL (Each class 2 hrs.): Marks-30

Lectures: 60 (40 Theory + 20 Practical classes)
Unit-I: Introduction: Unifying features of archegoniates; Transition to land habit; Alternation of generations. (2 lectures)

Unit-II: Bryophytes: General characteristics; Adaptations to land habit; Classification; Range of thallus organization. Classification (up to family). Riccia, Marchantia, Anthoceros, Sphagnum and Funaria; Reproduction and evolutionary trends in Riccia, Marchantia, Anthoceros and Funaria (developmental stages not included). (12 lectures)

Unit-III: Pteridophytes: General characteristics, classification. Classification (up to family), morphology, anatomy and reproduction of Psilotum, Selaginella, Equisetum and Pteris. (Developmental details not to be included). Apogamy, and apospory, heterospory and seed habit, telome theory, stelar evolution. (10 lectures)

Unit-IV Gymnosperms: General characteristics, classification (up to family), morphology, anatomy and reproduction of Cycas, Pinus, Ginkgo and Gnetum. (8 lectures)

Unit-V: Fossils: Geographical time scale, fossils and fossilization process. Morphology, anatomy and affinities of Rhynia, Calamites, Lepidodendron, Lyginopteris and Cycadeoidea. (8 lectures)

PRACTICAL

2. Marchantia - Morphology of thallus, whole mount of rhizoids & Scales, vertical section of thallus through Gemma cup, whole mount of Gemmae (all temporary slides), vertical section of Antheridiophore, Archegoniophore, longitudinal section of Sporophyte (all permanent slides).

3. Anthoceros - Morphology of thallus, dissection of sporophyte (to show stomata, spores, pseudoelaters, columella) (temporary slide), vertical section of thallus (permanent slide).

4. Sphagnum - Morphology of plant, whole mount of leaf (permanent slide only).

5. Funaria - Morphology, whole mount of leaf, rhizoids, operculum, peristome, annulus, spores (temporary slides); permanent slides showing antheridal and archegonial heads, longitudinal section of capsule and protonema.

6. Psilotum - Study of specimen, transverse section of synangium (permanent slide).

7. Selaginella - Morphology, whole mount of leaf with ligule, transverse section of stem, whole mount of strobilus, whole mount of micro sporophyll and megasporophyll (temporary slides), longitudinal section of strobilus (permanent slide).

8. Equisetum - Morphology, transverse section of internode, longitudinal section of strobilus, transverse section of strobilus, whole mount of sporangiophore, whole mount of spores (wet and dry) (temporary slide), transverse section of rhizome (permanent slide).

9. Pteris - Morphology, transverse section of rachis, vertical section of sporophyll, whole mount of sporangium, whole mount of spores (temporary slides), transverse section of rhizome, whole mount of prothallus with sex organs and young sporophyte (permanent slide).
10. Cycas- Morphology (coralloid roots, bulbil, leaf), whole mount of microsporophyll, transverse section of coralloid root, transverse section of rachis, vertical section of leaflet, vertical section of microsporophyll, whole mount of spores (temporary slides), longitudinal section of ovule, transverse section of root (permanent slide).

11. Pinus- Morphology (long and dwarf shoots, whole mount of dwarf shoot, male and female cones), transverse section of Needle, transverse section of stem, longitudinal section of transverse section of male cone, whole mount of microsporophyll, whole mount of Microspores (temporary slides), longitudinal section of female cone, tangential longitudinal section & radial longitudinal sections stem (permanent slide).

12. Gnetum- Morphology (stem, male & female cones), transverse section of stem, vertical section of ovule (permanent slide).

Suggested Readings:

5. Vander-Poorteri 2009 Introduction to Bryophytes. COP.

C-5: ANATOMY OF ANGIOSPERMS
(Credits-6: Theory-4, Practical-2)-Max. Marks: 100

THEORY (Each class 1 hr.): Marks-70
PRACTICAL (Each class 2 hrs.): Marks-30
Lectures: 60 (40 Theory + 20 Practical classes)

Unit-I: Introduction, types of tissue. Tissues: Classification of tissues; Simple and complex tissues (no phylogeny); cyto-differentiation of tracheary elements and sieve elements; Pits and plasmodesmata; Wall ingrowths and transfer cells, adcrustation and incrustation, Ergastic substances. (7 Lectures)

Unit-II: Stem: Organization of shoot apex (Apical cell theory, Histogen theory, Tunica Corpus theory, continuing meristematic residue, cytohistological zonation); Types of vascular bundles; Structure of dicot and monocot stem. (5 Lectures)
Leaf: Structure of dicot and monocot leaf, Kranz anatomy. 4 Lectures
Root: Organization of root apex (Apical cell theory, Histogen theory, Korper-Kappe theory); Quiescent centre; Root cap; Structure of dicot and monocot root; Endodermis, exodermis and origin of lateral root. (4 Lectures)
Unit-III: Vascular Cambium: Structure, function and seasonal activity of cambium; Secondary growth in root and stem. (4 Lectures)
Wood: Types of rays and axial parenchyma; Sapwood and heartwood; Ring and diffuse porous wood; Early and late wood; Dendrochronology. (5 Lectures)
Periderm: Development and composition of periderm and lenticels. (3 Lectures)

Unit IV: Adaptive and Protective Systems Epidermal tissue system, cuticle, epicuticular waxes, trichomes (uni-and multicellular, glandular and nonglandular, two examples of each), stomata (classification); Anatomical adaptations of xerophytes and hydrophytes. (5 Lectures)

Unit-V: Secretory System: Hydathodes, cavities, lithocysts and laticifers. (3 Lectures)

PRACTICAL

1. Study of anatomical details through permanent slides/temporary stain mounts/macerations/museum specimens with the help of suitable examples.
3. Distribution and types of parenchyma, collenchyma and sclerenchyma.
4. Xylem: Tracheary elements-tracheids, vessel elements; thickenings; perforation plates; xylem fibres.
5. Wood: ring porous; diffuse porous; tyloses; heart- and sapwood.
6. Phloem: Sieve tubes-sieve plates; companion cells; phloem fibres.
7. Epidermal system: cell types, stomata types; trichomes: non-glandular and glandular.
9. Stem: monocot, dicot - primary and secondary growth; periderm; lenticels.
10. Leaf: isobilateral, dorsiventral, C4 leaves (Kranz anatomy).

Suggested Readings:

C-6: ECONOMIC BOTANY

(Total Marks: 100)

THEORY (Each class 1 hr.): Marks - 70

PRACTICAL (Each class 2 hrs.): Marks - 30

Lectures: 60 (40 Theory + 20 Practical classes)

Unit-I: Origin of Cultivated Plants: Concept of Centres of Origin, their importance with reference to Vavilov’s work. Examples of major plant introductions; Crop domestication and loss of genetic diversity. (3 lectures)

Unit-II: Cereals: Wheat and Rice (origin, morphology, processing & uses). (3 lectures) Legumes: General account, importance to man and ecosystem. (3 lectures) Sugars & Starches: Morphology and processing of sugarcane, products and by-products of sugarcane industry. Potato morphology, propagation & uses. (3 lectures)

Unit-III: Spices: Listing of important spices, their family and part used, economic importance with special reference to fennel, saffron, clove and black pepper (4 lectures) Beverages: Tea, Coffee (morphology, processing & uses) 4 lectures Drug-yielding plants: Therapeutic and habit-forming drugs with special reference to Cinchona, Digitalis, Papaver and Cannabis. (4 lectures) Tobacco: Tobacco (Morphology, processing, uses and health hazards) (2 lectures)

Unit-IV: Oils & Fats: General description, classification, extraction, their uses and health implications groundnut, coconut, linseed and Brassica and Coconut (Botanical name, family & uses) (4 lectures) Essential Oils: General account, extraction methods, comparison with fatty oils & their uses. (4 lectures)

Unit-V: Natural Rubber: Para-rubber: tapping, processing and uses. (2 lectures) Timber plants: General account with special reference to teak and pine. (2 Lectures) Fibres: Classification based on the origin of fibres, Cotton and Jute (morphology, extraction and uses). (2 lectures)

PRACTICAL

1. Cereals: Rice (habit sketch, study of paddy and grain, starch grains, micro-chemical tests).

2. Legumes: Soya bean, Groundnut, (habit, fruit, seed structure, micro-chemical tests).

3. Sugars & Starches: Sugarcane (habit sketch; cane juice- micro-chemical tests), Potato (habit sketch, tuber morphology, T.S. tuber to show localization of starch grains, w.m. starch grains, micro-chemical tests).

4. Spices: Black pepper, Fennel and Clove (habit and sections).

5. Beverages: Tea (plant specimen, tea leaves), Coffee (plant specimen, beans).

7. Essential oil-yielding plants: Habit sketch of Rosa, Vetiveria, Santalum and Eucalyptus (specimens/photographs).

10. Tobacco: specimen and products of Tobacco. 11. Woods: Tectona, Pinus: Specimen, Section of young stem. 12. Fibre-yielding plants: Cotton (specimen, whole mount of seed to show lint and fuzz; whole mount of fibre and test for cellulose), Jute (specimen, transverse section of stem, test for lignin on transverse section of stem and fibre).

Suggested Readings:

C-7: GENETICS & PLANT BIO-TECHNOLOGY
(Credits-6: Theory-4, Practical-2)-Max. Marks: 100

THEORY (Each class 1 hr.): Marks-70
PRACTICAL (Each class 2 hrs.): Marks-30
Lectures: 60 (40 Theory + 20 Practical classes)

Unit-I: Mendelian genetics and its extension Mendelism: History; Principles of inheritance; Chromosome theory of inheritance; Autosomes and sex chromosomes; Probability and pedigree analysis; Incomplete dominance and codominance; Multiple alleles, Lethal alleles, Epistasis, Pleiotropy. (4 lectures)
The Structures of DNA and RNA / Genetic Material: DNA Structure: Miescher to Watson and Crick- historic perspective, DNA structure, Salient features of double helix, Types of DNA, Types of genetic material, denaturation and renaturation; Organization of DNA- Prokaryotes, Viruses, Eukaryotes. (6 lectures)

Unit-II: The replication of DNA: Chemistry of DNA synthesis (Kornbergs discovery); General principles bidirectional, semi-conservative and semi discontinuous replication (4 lectures)
Central dogma and genetic code: Key experiments establishing-The Central Dogma, Genetic code. Transcription in prokaryotes; Transcription in eukaryotes. (4 lectures)
Translation (Prokaryotes and eukaryotes): Ribosome structure and assembly, mRNA; aminoacyl tRNA synthetases; Various steps in protein synthesis. (4 lectures)

Unit-III: Linkage, crossing over and chromosome mapping: Linkage and crossing over-Cytological basis of crossing over; Recombination frequency, two factor and three factor crosses; Numerical based on gene mapping; Sex Linkage. (6 lectures)
Unit-IV: Variation in chromosome number and structure: Deletion, Duplication, Inversion, Translocation, Position effect, Euploidy and Aneuploidy (8 lectures)

Gene mutations: Types of mutations; Molecular basis of Mutations; Mutagens physical and chemical (Base analogs, deaminating, alkylating and intercalating agents); Detection of mutations: CIB method. (6 lectures)

Unit-V: Fine structure of gene: Classical vs molecular concepts of gene; Cis-Trans complementation test for functional allelism; Structure of Phage T4, rII Locus. (6 lectures)

Plant Tissue Culture: Historical perspective; Aseptic tissue culture techniques, Composition of media; Nutrient and hormone requirements (role of vitamins and hormones). (6 lectures)

Totipotency; Organogenesis; Embryogenesis (somatic and zygotic); Protoplast isolation, culture and fusion; Tissue culture applications (micropropagation, androgenesis, virus elimination, secondary metabolite production, haploids, triploids and hybrids; Cryopreservation; Germplasm Conservation). (6 lectures)

PRACTICAL

1. Meiosis through temporary squash preparation.
2. Mendel's laws through seed ratios. Laboratory exercises in probability and chi-square analysis.
3. Chromosome mapping using test cross data.
4. Pedigree analysis for dominant and recessive autosomal and sex linked traits with floral chart.
7. Study of aneuploidy: Downs, Klinefelters and Turner's syndromes.
8. Photographs/Permanent Slides showing Translocation Ring, Laggards and Inversion Bridge.

Suggested Readings:

C-8: PLANT ECOLOGY & PHYTOGEOGRAPHY
(Credits-6: Theory-4, Practical-2)-Max. Marks: 100
THEORY (Each class 1 hr.): Marks-70
PRACTICAL (Each class 2 hrs.): Marks-30
Lectures: 60 (40 Theory + 20 Practical classes)

Unit-I: Introduction Concept of ecology, Autoecology, Synecology, system ecology, Levels of organization. Inter-relationships between the living world and the environment, the components of environment. (2 lectures)

Unit-II: Soil: Importance; Origin; Formation; Composition; Physical; Chemical and Biological components; Soil profile. (5 lectures)
Water: Importance: States of water in the environment; Atmospheric moisture; Precipitation types (rain, fog, snow, hail, dew); Hydrological Cycle. (2 lectures)
Light, temperature, wind and fire: Variations; adaptations of plants to their variation. (4 lectures)

Unit-III: Biotic interactions: 2 lectures Population ecology: Characteristics and Dynamics .Ecological Speciation. (4 lectures)
Plant communities: Concept of ecological amplitude; Habitat and niche; Characters: analytical and synthetic; Ecotone and edge effect; succession- types. (4 lectures)

Unit-IV: Ecosystems: Trophic organisation; Food chains and Food webs; Ecological pyramids. (4 lectures)
Functional aspects of ecosystem: Principles and models of energy flow; Production and productivity; Biogeochemical cycles; Cycling of Carbon, Nitrogen and Phosphorus. (5 lectures)

Unit-V: Phytogeography: Principles; Theory of tolerance; Endemism; Brief description of major terrestrial biomes (one each from tropical, temperate & tundra). (8 lectures)

PRACTICAL
1. Study of instruments used to measure microclimatic variables: Soil thermometer, maximum and minimum thermometer, anemometer, psychrometer/hygrometer, rain gauge and lux meter.

2. Determination of pH of various soil and water samples (pH meter, universal indicator/Lovibond comparator and pH paper)
3. Analysis for carbonates, chlorides, nitrates, sulphates, organic matter and base deficiency from two soil samples by rapid field tests.

4. Determination of organic matter of different soil samples by Walkley & Black rapid titration method.

5. Comparison of bulk density, porosity and rate of infiltration of water in soils of three habitats.

6. Determination of dissolved oxygen of water samples from polluted and unpolluted sources.

7. (a). Study of morphological adaptations of hydrophytes and xerophytes (four each).
(b). Study of biotic interactions of the following: Stem parasite (Cuscuta), Root parasite (Orobanche) Epiphytes, Predation (Insectivorous plants).

8. Determination of minimal quadrat size for the study of herbaceous vegetation in the college campus, by species area curve method (species to be listed).

9. Quantitative analysis of herbaceous vegetation in the college campus for frequency and comparison with Raunkiaers frequency distribution law.

10. Quantitative analysis of herbaceous vegetation for density and abundance in the college campus.

11. Field visit to familiarise students with ecology of different sites.

Suggested Readings:

C-9: PLANT SYSTEMATICS
(Credits-6: Theory-4, Practical-2)-Max. Marks: 100
THEORY (Each class 1 hr.): Marks-70
PRACTICAL (Each class 2 hrs.): Marks-30
Lectures: 60 (40 Theory + 20 Practical classes)
Unit-I: Plant identification, Classification, Nomenclature; Biosystematics. (2 lectures)
Identification: Field inventory; Functions of Herbarium; Important herbaria and botanical gardens of the world and India; Virtual herbarium. (5 lectures)

Unit-II: Taxonomic hierarchy: Concept of taxa (family, genus, species); Categories and taxonomic hierarchy; Species concept (taxonomic, biological, evolutionary). (5 lectures)
Botanical nomenclature: Principles and rules (ICN); principle of priority and its limitations. (5 lectures)

Unit-III: Systematics- an interdisciplinary science: Evidence from palynology, cytology, phytochemistry and molecular data. (6 lectures)
Systems of classification: Major contributions of Hutchinson, Takhtajan and Cronquist; Classification systems of Bentham and Hooker (upto series) and Engler and Prantl (upto series); Brief reference of Angiosperm Phylogeny Group (APG III) classification. (6 lectures)

Unit-IV: Biometrics, numerical taxonomy and cladistics: Characters; Variations; cluster analysis; Phenograms, cladograms. (4 lectures)

Unit-V: Phylogeny of Angiosperms: Homology and analogy, parallelism and convergence, monophyly, Paraphyly, polyphyly and clades).origin & evolution of angiosperms; co-evolution of angiosperms and animals. (7 lectures)

PRACTICAL

1. Study of vegetative and floral characters of the following families (Description, V.S. flower, section of ovary, floral diagram/s, floral formula/e and systematic position according to Bentham & Hookers system of classification): Ranunculaceae - Ranunculus, Delphinium
 Brassicaceae - Brassica, Alyssum / Iberis
 Myrtaceae - Eucalyptus, Callistemon
 Umbelliferae - Coriandrum /Anethum / Foeniculum
 Asteraceae - Sonchus/Launaea, Vernonia/Ageratum, Eclipta/Tridax
 Solanaceae - Solanum nigrum/Withania
 Lamiaceae - Salvia/Ocimum
 Euphorbiaceae - Euphorbia hirta/E.mili, Jatropha
 Liliaceae - Asphodelus/Lilium/Allium
 Poaceae - Triticum/Hordeum/Avena

2. Field visit (local) Subject to grant of funds from the university.

3. Mounting of a properly dried and pressed specimen of any wild plant with herbarium label. (to be submitted in the record book)

Suggested Readings:

C-10: REPRODUCTIVE BIOLOGY OF ANGIOSPERMS
(Credits-6: Theory-4, Practical-2)-Max. Marks: 100

THEORY (Each class 1 hr.): Marks-70
PRACTICAL (Each class 2 hrs.): Marks-30

Lectures: 60 (40 Theory + 20 Practical classes)

Unit-II: Anther: Anther wall: Structure and functions, microsporogenesis. (2 lectures)
Pollen biology: Microgametogenesis; Pollen wall structure, MGU (male germ unit) structure, NPC system; Palynology and scope (a brief account); Pollen wall proteins; Pollen viability, storage and germination. (5 lectures)

Unit-III: Ovule: Structure; Types; Special structuresendothelium; Female gametophyte megasporogenesis (monosporic, bisporic and tetrasporic) and megagametogenesis (details of Polygonum type); Organization and ultrastructure of mature embryo sac. (5 lectures)
Endosperm: Types, development, structure and functions. (3 lectures)
Embryo: Six types of embryogeny; General pattern of development of dicot and monocot embryo. (6 lectures)

Unit-IV: Pollination and fertilization: Pollination types and significance; double fertilization. (4 lectures)
Self incompatibility: Basic concepts; Methods to overcome self incompatibility: Intraovarian and in vitro pollination; Cybrids, in vitro fertilization. (5 lectures)

Unit-V: Seed: Structure, importance and dispersal mechanisms 3 lectures Polyembryony and apomixes: Introduction; Classification; Causes and applications. (4 lectures)
Germline transformation: Pollen grain and ovules through pollen tube pathway method/ Agrobacterium/ biolistic. (4 lectures)

PRACTICAL

1. Anther: Wall and its ontogeny; Tapetum (amoeboid and glandular); MMC, spore tetrads, uninucleate, bicelled and dehisced anther stages through slides/micrographs, male germ unit (MGU) through photographs and schematic representation.
2. Pollen grains: Fresh and acetolyzed showing ornamentation and aperture, psuedomonads, polyads, pollinia (slides/photographs,fresh material), ultrastructure of pollen wall(micrograph); Pollen viability: Tetrazolium test. germination: Calculation of percentage germination in different media using hanging drop method.

3. Ovule: Types-anatropous, orthotropous, amphitropous/campylotropous, circinotropous, unitegmic, bitegmic; Tenuinucellate and crassinucellate; Special structures: Endothelium, obturator, hypostase, caruncle and aril (permanent slides/specimens/photographs).

4. Female gametophyte through permanent slides/ photographs: Types, ultrastructure of mature egg apparatus.

5. Embryogenesis: Study of development of dicot embryo through permanent slides; dissection of developing seeds for embryos at various developmental stages; Study of suspensor through electron micrographs.

Suggested Readings:

C-11: PLANT PHYSIOLOGY

(Credits-6: Theory-4, Practical-2)-Max. Marks: 100
THEORY (Each class 1 hr.): Marks-70
PRACTICAL (Each class 2 hrs.): Marks-30
Lectures: 60 (40 Theory + 20 Practical classes)

Translocation in the phloem: PressureFlow Model; Phloem loading and unloading; Sourcesink relationship. (5 lectures)

Unit-II: Mineral nutrition: Essential and beneficial elements, macro and micronutrients, methods of study and use of nutrient solutions, criteria for essentiality, mineral deficiency symptoms, roles of essential elements, chelating agents. (5 lectures)

Unit-III: Nutrient Uptake: Soil as a nutrient reservoir, transport of ions across cell membrane, passive absorption, facilitated diffusion, active absorption, role of ATP, carrier systems, proton ATPase pump and ion flux, uniport, cotransport, symport, antiport. (5 lectures)
Unit-IV: Plant growth regulators: Discovery, chemical nature (basic structure), bioassay and physiological roles of Auxin, Gibberellins, Cytokinin, Abscisic acid, Ethylene. (10 lectures)

Unit-V: Physiology of flowering: Photoperiodism, flowering stimulus, florigen concept, vernalization, seed dormancy. (4 lectures)
Phytochrome: Discovery, chemical nature, role of phytochrome in photomorphogenesis. (5 lectures)

PRACTICAL

1. Determination of osmotic potential of plant cell sap by plasmolytic method.
2. Determination of water potential of given tissue (potato tuber) by weight method.
4. Calculation of stomatal index and stomatal frequency from the two surfaces of leaves of a mesophyte and xerophyte.
5. To calculate the area of an open stoma and percentage of leaf area open through stomata in a mesophyte and xerophyte (both surfaces).
6. To study the phenomenon of seed germination (effect of light).
7. To study the induction of amylase activity in germinating barley grains.
 Demonstration experiments:
 (a) To demonstrate suction due to transpiration.
 (b) Fruit ripening/Rooting from cuttings (Demonstration).
 (c) Bolting experiment/Avena coleptile bioassay (demonstration).

Suggested Readings:

C-12: PLANT METABOLISM
(Credits-6: Theory-4, Practical-2)-Max. Marks: 100

THEORY (Each class 1 hr.): Marks-70

PRACTICAL (Each class 2 hrs.): Marks-30
Lectures: 60 (40 Theory + 20 Practical classes)
Unit-I: Concept of metabolism: Introduction, anabolic and catabolic pathways, regulation of metabolism. (5 lectures)
Carbohydrate metabolism: Synthesis and catabolism of sucrose and starch. (1 lectures)

Unit-II: Carbon assimilation: Historical background, photosynthetic pigments, role of photosynthetic pigments (chlorophylls and accessory pigments), antenna molecules and reaction centres, photochemical reactions, photosynthetic electron transport, PSI, PSII, Q cycle, \(CO_2\) reduction, photorespiration, C4 pathways; Crassulacean acid metabolism; Factors affecting \(CO_2\) reduction. (10 lectures)

Unit-III: Carbon Oxidation: Glycolysis, fate of pyruvate, regulation of glycolysis, oxidative pentose phosphate pathway, oxidative decarboxylation of pyruvate; TCA cycle, amphibolic role, anaplerotic reactions, regulation of the cycle, mitochondrial electron transport, oxidative phosphorylation, cyanidere-sistant respiration, factors affecting respiration. (6 lectures)
ATP-Synthesis: Mechanism of ATP synthesis, oxidative and photophosphorylation. (4 lectures)

Unit-IV: Lipid metabolism: Synthesis and breakdown of triglycerides, \(\beta\)-oxidation, glyoxylate cycle, gluconeogenesis and its role in mobilisation of lipids during seed germination, \(\alpha\) oxidation. (5 lectures)

Unit-V: Nitrogen metabolism: Nitrate assimilation, biological nitrogen fixation (examples of legumes and non-legumes); Physiology and biochemistry of nitrogen fixation; Ammonia assimilation and transamination. (5 lectures)
Mechanisms of signal transduction: Calcium, phospholipids, cGMP, NO. (4 lectures)

PRACTICAL

1. Chemical separation of photosynthetic pigments.
2. Experimental demonstration of Hills reaction.
3. To study the effect of light intensity on the rate of photosynthesis.
4. Effect of carbon dioxide on the rate of photosynthesis.
5. To compare the rate of respiration in different parts of a plant.
6. To demonstrate activity of Nitrate Reductase in germinating leaves of different plant sources.
7. To study the activity of lipases in germinating oilseeds and demonstrate mobilization of lipids during germination.
8. Demonstration of fluorescence by isolated chlorophyll pigments.

Suggested Readings:

DISCIPLINE SPECIFIC ELECTIVE COURSES

SEMESTER-I

DSE-1: ANALYTICAL TECHNIQUES IN PLANT SCIENCES

(Credits-6: Theory-4, Practical-2)-Max. Marks: 100

THEORY (Each class 1 hr.): Marks-70

PRACTICAL (Each class 2 hrs.): Marks-30

Lectures: 60 (40 Theory + 20 Practical classes)

UNIT-I: Imaging and related techniques: Principles of microscopy; Light microscopy; Fluorescence microscopy; Confocal microscopy; Use of fluorochromes: (a) Flow cytometry (FACS); (b) Applications of fluorescence microscopy: Chromosome banding, FISH, chromosome painting; Transmission and Scanning electron microscopy sample preparation for electron microscopy, cryofixation, negative staining, shadow casting, freeze fracture, freeze etching. (10 lectures)

UNIT-II: Cell fractionation: Centrifugation: Differential and density gradient centrifugation, sucrose density gradient, CsCl2gradient, analytical centrifugation, ultracentrifugation, marker enzymes. (5 lectures)

UNIT-III: Radioisotopes: Use in biological research, auto-radiography, pulse chase experiment. (3 lectures)

Spectrophotometry: Principle and its application in biological research. 3 lectures Chromatography: Principle; Paper chromatography; Column chromatography, TLC, GLC, HPLC, Ion-exchange chromatography; Molecular sieve chromatography; Affinity chromatography. (6 lectures)

UNIT-IV: Characterization of proteins and nucleic acids: Mass spectrometry; X-ray diffraction; X-ray crystallography; Characterization of proteins and nucleic acids; Electrophoresis: AGE, PAGE, SDS-PAGE (5 lectures)

UNIT-V: Biostatistics: Statistics, data, population, samples, parameters; Representation of Data: Tabular, Graphical; Measures of central tendency: Arithmetic mean, mode, median; Measures of dispersion: Range, mean deviation, variation, standard deviation; Chi-square test for goodness of fit. (8 lectures)

PRACTICAL

1. Study of Blotting techniques: Southern, Northern and Western, DNA fingerprinting, DNA sequencing, PCR through photographs.

2. Demonstration of ELISA.

3. To separate nitrogenous bases by paper chromatography.

4. To separate sugars by thin layer chromatography.

5. Isolation of chloroplasts by differential centrifugation.
6. To separate chloroplast pigments by column chromatography.

7. To estimate protein concentration through Lowry’s methods.

8. To separate proteins using PAGE.

9. To separation DNA (marker) using AGE.

10. Study of different microscopic techniques using photographs/micrographs (freeze fracture, freeze etching, negative staining, positive staining, fluorescence and FISH).

11. Preparation of permanent slides (double staining).

Suggested Readings:

SEMESTER-II
DSE-2: INDUSTRIAL & ENVIRONMENTAL MICROBIOLOGY
(Credits-6: Theory-4, Practical-2)-Max. Marks: 100
THEORY (Each class 1 hr.): Marks-70
PRACTICAL (Each class 2 hrs.): Marks-30
Lectures: 60 (40 Theory + 20 Practical classes)

UNIT-I: Scope of microbes in industry and environment: (2 lectures)
Bioreactors/Fermenters and fermentation processes: Solid-state and liquid-state (stationary and submerged) fermentations; Batch and continuous fermentations. Components of a typical bioreactor, Types of bioreactors laboratory, pilot-scale and production fermenters; Constantly stirred tank fermenter, tower fermenter, fixed bed and fluidized bed bioreactors and airlift fermenter. A visit to any educational institute/ industry to see an industrial fermenter, and other downstream processing operations. (8 lectures)

UNIT-II: Microbial production of industrial products: Microorganisms involved, media, fermentation conditions, downstream processing and uses; Filtration, centrifugation, cell disruption, solvent extraction, precipitation and ultrafiltration, lyophilization, spray drying; Hands on microbial fermentations for the production and estimation (qualitative and quantitative) of Enzyme: amylase or lipase activity, Organic acid (citric acid or glutamic acid), alcohol (Ethanol) and antibiotic (Penicillin) (8
Microbial enzymes of industrial interest and enzyme immobilization: Microorganisms for industrial applications and hands on screening microorganisms for casein hydrolysis; starch hydrolysis; cellulose hydrolysis. Methods of immobilization, advantages and applications of immobilization, large scale applications of immobilized enzymes (glucose isomerase and penicillin acylase). (6 lectures)

UNIT-III: Microbes and quality of environment: Distribution of microbes in air; Isolation of microorganisms from soil, air and water. (4 lectures)

UNIT-IV: Microbial flora of water: Water pollution, role of microbes in sewage and domestic waste water treatment systems. Determination of BOD, COD, TDS and TOC of water samples; Microorganisms as indicators of water quality, check coliform and fecal coliform in water samples. (6 lectures)

UNIT-V: Microbes in agriculture and remediation of contaminated soils: Biological fixation; Mycorrhizae; Bioremediation of contaminated soils. Isolation of root nodulating bacteria, arbuscular mycorrhizal colonization in plant roots. (6 lectures)

PRACTICAL

1. Principles and functioning of instruments in microbiology laboratory.
2. Hands on sterilization techniques and preparation of culture media.

Suggested Readings:

SEMESTER-III

DSE-3: PLANT BREEDING

(Credits-6: Theory-4, Practical-2)-Max. Marks: 100

THEORY (Each class 1 hr.): Marks-70

PRACTICAL (Each class 2 hrs.): Marks-30

Lectures: 60 (40 Theory + 20 Practical classes)

UNIT-II: Methods of crop improvement: Introduction: Centres of origin and domestication of crop plants, plant genetic resources; Acclimatization; Selection methods: For self pollinated, cross pollinated and vegetatively propagated plants; Hybridization: For self, cross and vegetatively propagated plants Procedure, advantages and limitations. (15 lectures)

UNIT-III: Quantitative inheritance: Concept, mechanism, examples of inheritance of Kernel colour in wheat, Skin colour in human beings. Monogenic vs polygenic Inheritance. (6 lectures)
UNIT-IV: Inbreeding depression and heterosis: History, genetic basis of inbreeding depression and heterosis; Applications. (6 lectures)

UNIT-V: Crop improvement and breeding: Role of mutations; Polyploidy; Distant hybridization and role of biotechnology in crop improvement. (7 lectures)

PRACTICAL

Practical Practical related to theory.

Suggested Readings:

SEMESTER-IV

DSE-4: NATURAL RESOURCE MANAGEMENT
(Credits-6: Theory-4, Practical-2)-Max. Marks: 100

THEORY (Each class 1 hr.): Marks-70
PRACTICAL (Each class 2 hrs.): Marks-30
Lectures: 60 (40 Theory + 20 Practical classes)

UNIT-I: Natural resources: Definition and types. (2 lectures)
Sustainable utilization: Concept, approaches (economic, ecological and socio-cultural). (5 lectures)

UNIT-II: Land: Utilization (agricultural, pastoral, horticultural, silvicultural); Soil degradation and management. (5 lectures)
Water: Fresh water (rivers, lakes, groundwater, aquifers, watershed); Marine; Estuarine; Wetlands; Threats and management strategies. (4 lectures)

UNIT-III: Biological Resources: Biodiversity-definition and types; Significance; Threats; Management strategies; Bioprospecting; IPR; CBD; National Biodiversity Action Plan. (8 lectures)
Forests: Definition, Cover and its significance (with special reference to India); Major and minor forest products; Depletion; Management. (4 lectures)

UNIT-IV: Energy: Renewable and non-renewable sources of energy 4 lectures Contemporary practices in resource management: EIA, GIS, Participatory Resource Appraisal, Ecological Footprint with emphasis on carbon footprint. (6 lectures)

UNIT-V: Resource Accounting; Waste management. National and international efforts in resource management and conservation (4 lectures)

PRACTICAL

1. Estimation of solid waste generated by a domestic system (biodegradable and non-biodegradable) and its impact on land degradation.
2. Collection of data on forest cover of specific area.

3. Measurement of dominance of woody species by DBH (diameter at breast height) method.

4. Calculation and analysis of ecological footprint.

5. Ecological modeling.

Suggested Readings:

SEMESTER-V
DSE-5: HORTICULTURAL PRACTICES & POST-HARVEST TECHNOLOGY
(Credits-6: Theory-4, Practical-2)-Max. Marks: 100
THEORY (Each class 1 hr.): Marks-70
PRACTICAL (Each class 2 hrs.): Marks-30
Lectures: 60 (40 Theory + 20 Practical classes)

UNIT-I: Introduction: Scope and importance, Branches of horticulture; Role in rural economy and employment generation; Importance in food and nutritional security; Urban horticulture and ecotourism. (2 lectures)
Ornamental plants: Types, classification (annuals, perennials, climbers and trees); Identification and salient features of some ornamental plants [rose, marigold, gladiolus, carnations, orchids, poppies, gerberas, tuberose, sages, cacti and succulents (opuntia, agave and spurge)]. Ornamental flowering trees (Indian laburnum, gulmohar, Jacaranda, Lagerstroemia, fishtail and areca palms, semul, Coral tree). (3 lectures)

UNIT-II: Fruit and vegetable crops: Production, origin and distribution; Description of plants and their economic products; Management and marketing of vegetable and fruit crops; Identification of some fruits and vegetable varieties (citrus, banana, mango, chillies and cucurbits). (4 lectures)
Horticultural techniques: Application of manure, fertilizers, nutrients and PGRs; Weed control; Biofertilizers, biopesticides; Irrigation methods (drip irrigation, surface irrigation, furrow and border irrigation); Hydroponics; Propagation Methods: asexual (grafting, cutting, layering, budding), sexual (seed propagation), Scope and limitations. (6 lectures)

UNIT-III: Landscaping and garden design: Planning and layout (parks and avenues); gardening traditions - Ancient Indian, European, Mughal and Japanese Gardens; Urban forestry; policies and practices. (4 lectures)
Floriculture: Cut flowers, bonsai, commerce (market demand and supply); Importance of flower shows and exhibitions. (4 lectures)

UNIT-IV: Post-harvest technology: Importance of post harvest technology in horticultural crops; Evaluation of quality traits; Harvesting and handling of fruits, vegetables and cut flowers; Principles, methods of preservation and processing; Methods of minimizing loses during storage and transportation; Food irradiation - advantages and disadvantages; food safety. (6 lectures)
Disease control and management : Field and post-harvest diseases; Identification of deficiency symptoms; remedial measures and nutritional management practices; Crop sanitation; IPM strategies (genetic, biological and chemical methods for pest control); Quarantine practices; Identification of common diseases and pests of ornamentals, fruits and vegetable crops. (5 lectures)

UNIT-V: Horticultural crops - conservation and management: Documentation and conservation of germplasm; Role of micropropagation and tissue culture techniques; Varieties and cultivars of various horticultural crops; IPR issues; National, international and professional societies and sources of information on horticulture. (6 lectures)
Field Trip: Field visits to gardens, standing crop sites, nurseries, vegetable gardens and horticultural fields at IARI or other suitable locations.

PRACTICAL

Practical Practical related to theory Suggested Readings:

SEMIESTER-VI
DSE-6: BIO-INFORMATICS
(Credits-6: Theory-4, Practical-2)-Max. Marks: 100
THEORY (Each class 1 hr.): Marks-70
PRACTICAL (Each class 2 hrs.): Marks-30
Lectures: 60 (40 Theory + 20 Practical classes)

UNIT-I: Introduction to Bioinformatics: Introduction, Branches of Bioinformatics, Aim, Scope and Research areas of Bioinformatics. (3 Lectures)
Databases in Bioinformatics: Introduction, Biological Databases, Classification format of Biological Databases, Biological Database Retrieval System. (4 Lectures)

UNIT-II: Biological Sequence Databases: National Center for Biotechnology Information (NCBI): Tools and Databases of NCBI, Database Retrieval Tool, Sequence Submission to NCBI, Basic local alignment search tool (BLAST), Nucleotide Database, Protein Database, Gene Expression Database. EMBL Nucleotide Sequence Database (EMBL-Bank): Introduction, Sequence Retrieval, Sequence Submission to EMBL, Sequence analysis tools. DNA Data Bank of Japan (DDBJ): Introduction, Resources at DDBJ, Data Submission at DDBJ. Protein Information Resource (PIR): About PIR, Resources of PIR, Databases of PIR, Data Retrieval in PIR. Swiss-Prot: Introduction and Salient Features. (15 Lectures)

UNIT-III: Sequence Alignments: Introduction, Concept of Alignment, Multiple Sequence Alignment (MSA), MSA by CLUSTALW, Scoring Matrices, Percent Accepted Mutation (PAM), Blocks of Amino Acid Substitution Matrix (BLOSUM). (8 Lectures)

UNIT-IV: Molecular Phylogeny: Methods of Phylogeny, Software for Phylogenetic Analyses, Consistency of Molecular Phylogenetic Prediction. (5 Lectures)

UNIT-V: Applications of Bioinformatics: Structural Bioinformatics in Drug Discovery, Quantitative structure-activity relationship (QSAR) techniques in Drug Design, Microbial genome applications, Crop improvement. (5 Lectures)

PRACTICAL

1. Nucleic acid and protein databases.
2. Sequence retrieval from databases.
3. Sequence alignment.
4. Sequence homology and Gene annotation.

Suggested Readings:

SKILL ENHANCEMENT COURSES (SEC)
SEMESTER-III
SEC-I: BIO-FERTILIZERS
(Credits-2: Lectures: 30)
THEORY (Each class 1 hour): Marks: 50

Unit-I: General account about the microbes used as biofertilizer Rhizobium isolation, identification, mass multiplication, carrier based inoculants, Actinorrhizal symbiosis. (4 lectures)

Unit-II: Azospirillum: isolation and mass multiplication carrier based inoculant, associative effect of different microorganisms.Azotobacter: classification, characteristics crop response to Azotobacter inoculum, maintenance and mass multiplication. (8 lectures)

Unit-III: Cyanobacteria (blue green algae), Azolla and Anabaena azollae association, nitrogen fixation, factors affecting growth, blue green algae and Azolla in rice cultivation. (4 lectures)

Unit-IV: Mycorrhizal association, types of mycorrhizal association, taxonomy, occurrence and distribution, phosphorus nutrition, growth and yield colonization of VAM isolation and inoculum production of VAM, and its influence on growth and yield of crop plants. (8 lectures)

Unit-V: Organic farming Green manuring and organic fertilizers, Recycling of biodegradable municipal, agricultural and Industrial wastes bio-compost making methods, types and method of vermicomposting field Application. (6 lectures)

Suggested Readings:

SEMESTER-IV
SEC-II: HERBAL TECHNOLOGY
(Credits-2: Lectures: 30)
THEORY (Each class 1 hour): Marks: 50

Unit-I: Herbal medicines: history and scope - definition of medical terms - role of medicinal plants in Siddha systems of medicine; cultivation - harvesting - processing - storage - marketing and utilization of medicinal plants. (6 lectures)

Unit-II: Pharmacognosy - systematic position medicinal uses of the following herbs in curing various ailments; Tulsi, Ginger, Fenugreek, Indian Goose berry and Ashoka. (6 lectures)
Unit-III: Phytochemistry - active principles and methods of their testing - identification and utilization of the medicinal herbs; Catharanthus roseus (cardiotonic), Withania somnifera (drugs acting on nervous system), Clerodendron phlomoides (anti-rheumatic) and Centella asiatica (memory booster). (6 lectures)

Unit-IV: Analytical pharmacognosy: Drug adulteration - types, methods of drug evaluation - Biological testing of herbal drugs - Phytochemical screening tests for secondary metabolites (alkaloids, flavonoids, steroids, triterpenoids, phenolic compounds) (8 lectures)

Unit-V: Medicinal plant banks micro propagation of important species (Withania somnifera, neem and tulsi- Herbal foods-future of pharmacognosy) (4 lectures)

Suggested Readings:

SEMESTER-V
SEC-3A: FLORICULTURE
(Credits-2: Lectures: 30)
THEORY (Each class 1 hour): Marks: 50

Unit-I: Introduction: History of gardening; Importance and scope of floriculture and landscape gardening. (2 lectures)

Unit-II: Nursery Management and Routine Garden Operations: Sexual and vegetative methods of propagation; Soil sterilization; Seed sowing; Pricking; Planting and transplanting; Shading; Stopping or pinching; Defoliation; Wintering; Mulching; Topiary; Role of plant growth regulators. (8 lectures)

Unit-III: Ornamental Plants: Flowering annuals; Herbaceous perennials; Divine vines; Shade and ornamental trees; Ornamental bulbous and foliage plants; Cacti and succulents; Palms and Cycads; Ferns and Selaginelllas; Cultivation of plants in pots; Indoor gardening; Bonsai. (4 lectures)

Unit-IV: Principles of Garden Designs: English, Italian, French, Persian, Mughal and Japanese gardens; Features of a garden (Garden wall, Fencing, Steps, Hedge, Edging, Lawn, Flower beds, Shrubbery, Borders, Water garden. Some Famous gardens of India (4 lectures)
Landscaping Places of Public Importance: Landscaping highways and Educational institutions. (4 lectures)

Unit-V: Commercial Floriculture: Factors affecting flower production; Production and packaging of cut flowers; Flower arrangements; Methods to prolong vase life; Cultivation of Important cut flowers (Carnation, Aster, Chrysanthemum, Dahlia, Gerbera, Gladiolous, Marigold, Rose, Lilium, Orchids). (6 lectures)

Diseases and Pests of Ornamental Plants. (2 lectures)

Suggested Readings:

SEMESTER-V
SEC-3B: NURSERY & GARDENING
(Credits-2: Lectures: 30)

THEORY (Each class 1 hour): Marks: 50 Marks

Unit-I: Nursery: definition, objectives and scope and building up of infrastructure for nursery, planning and seasonal activities - Planting - direct seeding and transplants. (4 lectures)

Unit-II: Seed: Structure and types - Seed dormancy; causes and methods of breaking dormancy - Seed storage: Seed banks, factors affecting seed viability, genetic erosion Seed production technology - seed testing and certification. (6 lectures)

Unit-III: Vegetative propagation: air-layering, cutting, selection of cutting, collecting season, treatment of cutting, rooting medium and planting of cuttings - Hardening of plants green house - mist chamber, shed root, shade house and glass house. (6 lectures)

Unit-IV: Gardening: definition, objectives and scope - different types of gardening landscape and home gardening - parks and its components - plant materials and design computer applications in landscaping - Gardening operations: soil laying, manuring, watering, management of pests and diseases and harvesting. (6 lectures)

Unit-V: Sowing/raising of seeds and seedlings - Transplanting of seedlings - Study of cultivation of different vegetables: cabbage, brinjal, ladys finger, onion, garlic, tomatoes, and carrots - Storage and marketing procedures. (6 lectures)

Suggested Readings:

SEMESTER-VI
SEC-6: MUSHROOM CULTURE TECHNOLOGY
(Credits-2: Lectures: 30)
THEORY (Each class 1 hour): Marks: 50

Unit-I: Introduction, history. Nutritional and medicinal value of edible mushrooms; Poisonous mushrooms. Types of edible mushrooms available in India - Volvariella volvacea, Pleurotus citrinopileatus, Agaricus bisporus. (5 lectures)

Unit-II: Cultivation Technology: Infrastructure: substrates (locally available) Polythene bag, vessels, Inoculation hook, inoculation loop, low cost stove, sieves, culture rack, mushroom unit (Thatched house) water sprayer, tray, small polythene bag. (6 Lectures)

Unit-III: Pure culture: Medium, sterilization, preparation of spawn, multiplication. Mushroom bed preparation - paddy straw, sugarcane trash, maize straw, banana leaves. Factors affecting the mushroom bed preparation - Low cost technology, Composting technology in mushroom production. (6 lectures)

Unit-IV: Storage and nutrition: Short-term storage (Refrigeration - upto 24 hours) Long term Storage (canning, pickels, papads), drying, storage in salt solutions. Nutrition - Proteins - amino acids, mineral elements nutrition - Carbohydrates, Crude fibre content - Vitamins. (8 lectures)

Unit-V: Food Preparation: Types of foods prepared from mushroom. Research Centres - National level and Regional level. Cost benefit ratio - Marketing in India and abroad, Export Value. (5 lectures)

Suggested Readings:

Unit-I: Atomic structure

Unit-II: Periodicity of elements
Periodicity of Elements: s, p, d, f block elements, the long form of periodic table. Detailed discussion of the following properties of the elements, with reference to s & p-block. (a) Effective nuclear charge, shielding or screening effect, Slater rules, variation of effective nuclear charge in periodic table. (b) Atomic radii (van der Waals) (c) Ionic and crystal radii. (d) Covalent radii (octahedral and tetrahedral) (e) Ionization enthalpy, Successive ionization enthalpies and factors affecting ionization energy. Applications of ionization enthalpy. (f) Electron gain enthalpy, trends of electron gain enthalpy. (g) Electronegativity, Paulings/ Mullikens electronegativity scales. Variation of electronegativity with bond order, partial charge, hybridization, group electronegativity. Sandersons electron density ratio. (16 Lectures)

Unit-III: Chemical bonding-I
Ionic bond: General characteristics, types of ions, size effects, radius ratio rule and its limitations. Packing of ions in crystals. Born-Land equation with derivation. Madelung constant, Born-Haber cycle and its application, Solvation energy. (ii) Covalent bond: Lewis structure, Valence Bond theory (Heitler-London approach). Energetics of hybridization, equivalent and non-equivalent hybrid orbitals, Resonance and resonance energy, Molecular orbital theory. Molecular orbital diagrams of diatomic and simple polyatomic molecules $N_2, O_2, C_2, B_2, F_2, CO, NO$, and their ions; Valence shell electron pair repulsion theory (VSEPR), shapes of simple molecules and ions containing lone pairs and bond pairs of electrons, multiple bonding (σ and π bond approach) and bond lengths. Covalent character in ionic compounds, polarizing power and polarizability. Fajans rules and consequences of polarization. Ionic character in covalent compounds: Bond moment and dipole moment. Percentage ionic character from dipole moment and electronegativity difference. (16 Lectures)

Unit-IV: Chemical Bonding-II
(i) Metallic Bond: Qualitative idea of valence bond and band theories. Semiconductors and insulators. (ii) Weak Chemical Forces: van der Waals forces, ion-dipole forces, dipole-dipole interactions,
induced dipole interactions, Instantaneous dipole-induced dipole interactions. Repulsive forces, Hydrogen bonding (theories of hydrogen bonding, valence bond treatment) Effects of chemical force, melting and boiling points, solubility energetics of dissolution process. (10 Lectures)
Oxidation-reduction Redox equations, standard electrode potential and its application to inorganic reactions. Principles involved in some volumetric analyses (iron, copper and manganese). (4 Lectures)

Reference Books:

PRACTICAL: C-1 LAB.

(A) Titrimetric Analysis:
(i) Calibration and use of apparatus. (ii) Preparation of solutions of different Molarity/Normality of titrants.

(B) Acid-Base Titrations:
(i) Estimation of carbonate and hydroxide present together in mixture. (ii) Estimation of carbonate and bicarbonate present together in a mixture. (iii) Estimation of free alkali present in different soaps/detergents.

(C) Oxidation-Reduction Titrimetry:
(i) Estimation of Fe(II) and oxalic acid using standardized KMnO4 solution. (ii) Estimation of oxalic acid and sodium oxalate in a given mixture. (iii) Estimation of Fe(II) with K2Cr2O7 using internal (diphenylamine, anthranilic acid) and external indicator.

Reference text:
Vogel, A.I. A Textbook of Quantitative Inorganic Analysis, ELBS.

C-2: PHYSICAL CHEMISTRY
(Credits-6: Theory-4, Practical-2)-Max. Marks: 100
THEORY (Each class 1 hr.): Marks-70
PRACTICAL (Each class 2 hrs.): Marks-30
Lectures: 60 (40 Theory + 20 Practical classes)

Unit-I: Gaseous state
Kinetic molecular model of a gas: postulates and derivation of the kinetic gas equation; collision frequency; collision diameter; mean free path and viscosity of gases, including their temperature and pressure dependence, relation between mean free path and coefficient of viscosity, calculation of σ from η; variation of viscosity with temperature and pressure. Maxwell distribution and its use in evaluating molecular velocities (average, root mean square and most probable) and average kinetic energy, law of equipartition of energy, degrees of freedom and molecular basis of heat capacities. Behaviour of real gases: Deviations from ideal gas behaviour, compressibility factor, Z, and its variation with pressure for different gases. Causes of deviation from ideal behaviour. van der Waals
equation of state, its derivation and application in explaining real gas behaviour. Isotherms of real gases and their comparison with van der Waals isotherms, continuity of states, critical state, relation between critical constants and van der Waals constants, law of corresponding states. (18 Lectures)

Unit-II: Liquid state
(i) Qualitative treatment of the structure of the liquid state; physical properties of liquids; vapour pressure, surface tension and coefficient of viscosity, and their determination. Effect of addition of various solutes on surface tension and viscosity. Explanation of cleansing action of detergents. Temperature variation of viscosity of liquids and comparison with that of gases. Qualitative discussion of structure of water. (6 Lectures)

Ionic equilibria- I
(ii) Strong, moderate and weak electrolytes, degree of ionization, factors affecting degree of ionization, ionization constant and ionic product of water. Ionization of weak acids and bases, pH scale, common ion effect; dissociation constants of mono- and diprotic acids. (6 Lectures)

Unit- III: Solid state
Nature of the solid state, law of constancy of interfacial angles, law of rational indices, Miller indices, elementary ideas of symmetry, symmetry elements and symmetry operations, seven crystal systems and fourteen Bravais lattices; X-ray diffraction, Braggs law, a simple account of rotating crystal method and powder pattern method. Analysis of powder diffraction patterns of NaCl, CsCl and KCl. Defects in crystals. Glasses and liquid crystals. (16 Lectures)

Unit-IV: Ionic equilibria - II
Salt hydrolysis-calculation of hydrolysis constant, degree of hydrolysis and pH for different salts. Buffer solutions; derivation of Henderson equation and its applications; buffer capacity, buffer range, buffer action and applications of buffers in analytical chemistry and biochemical processes in the human body. Solubility and solubility product of sparingly soluble salts applications of solubility product principle. Qualitative treatment of acid base titration curves(calculation of pH at various stages). Theory of acidbase indicators; selection of indicators and their limitations. Multistage equilibria in polyelectrolyte systems; hydrolysis and hydrolysis constants. (14 Lectures)

Reference Books:

PRACTICAL: C-2 LAB.

Surface tension measurements.
(a) Determine the surface tension by (i) drop number (ii) drop weight method.
(b) Study the variation of surface tension of detergent solutions with concentration.

Viscosity measurement using Ostwalds viscometer.
(a) Determination of viscosity of aqueous solutions of (i) polymer, (ii) ethanol, and (iii) sugar at room temperature.
(b) Study the variation of viscosity of sucrose solution with the concentration of solute.

pHmetry.

(a) Study the effect on pH of addition of HCl/NaOH to solutions of acetic acid, sodium acetate and their mixtures.

(b) Preparation of buffer solutions of different pH (i) Sodium acetate-acetic acid, (ii) Ammonium chloride-ammonium hydroxide.

(c) pH metric titration of (i) strong acid vs. strong base, (ii) weak acid vs. strong base.

(d) Determination of dissociation constant of a weak acid.

Reference Books:

SEMESTER-II

C-3: ORGANIC CHEMISTRY I
(Credits-6: Theory-4, Practical-2)-Max. Marks: 100

THEORY (Each class 1 hr.): Marks-70

PRACTICAL (Each class 2 hrs.): Marks-30

Lectures: 60 (40 Theory + 20 Practical classes)

Unit-I: BASICS OF ORGANIC CHEMISTRY

Electronic Displacements: Inductive, electromeric, resonance and mesomeric effects, hyperconjugation and their applications; Dipole moment; Organic acids and bases; their relative strength. Homolytic and Heterolytic fission with suitable examples. Curly arrow rules; Electrophiles and Nucleophiles; Nucleophlicity and basicity; Types, shape and their relative stability of carbocations, carbanions, free radicals and carbenes. Introduction to types of organic reactions and their mechanism: Addition, Elimination and Substitution reactions.

CARBON-CARBON SIGMA BONDS

Unit-II: STEREOCHEMISTRY

Fischer Projection, Newmann and Sawhorse Projection formulae; Geometrical isomerism: cistrans and, syn-anti isomerism E/Z notations with C.I.P rules. Optical Isomerism: Optical Activity, Specific Rotation, Chirality/Asymmetry, Enantiomers, Molecules with one and two chiral-centres, Disteroisomers, meso structures, Racemic mixture and resolution. Relative and absolute configuration: D/L and R/S designations. (18 Lectures)
Unit-III: CHEMISTRY OF ALIPHATIC HYDROCARBONS

A. Carbon-Carbon pi bonds:
Formation of alkenes and alkynes by elimination reactions, Mechanism of E1, E2, E1cb reactions. Saytzeff and Hofmann eliminations. Reactions of alkenes: Electrophilic additions their mechanisms (Markownikoff/ Anti Markownikoff addition), mechanism of oxymercuration-demercuration, hydroboration-oxidation, ozonolysis, reduction (catalytic and chemical), syn and anti-hydroxylation (oxidation). 1,2- and 1,4-addition reactions in conjugated dienes and, Diels-Alder reaction; Allylic and benzylic bromination and mechanism, e.g. propene, 1-butene, toluene, ethyl benzene. Reactions of alkynes: Acidity, Electrophilic and Nucleophilic additions. Hydration to form carbonyl compounds, Alkylation of terminal alkynes. B. Cycloalkanes and Conformational Analysis
Types of cycloalkanes and their relative stability, Baeyer strain theory, Conformation analysis of alkanes (ethane and n-butane): Relative stability with energy diagrams. Energy diagrams of cyclohexane: Chair, Boat and Twist boat forms. (18 Lectures)

Unit-IV: AROMATIC HYDROCARBONS
Aromaticity: Hckels rule, aromatic character of arenes, cyclic carbocations/carbanions and heterocyclic compounds with suitable examples. Electrophilic aromatic substitution: halogenation, nitration, sulphonation and Friedel-Crafts alkylation/acylation with their mechanism. Directing effects of the groups. (12 Lectures)

Reference Books:
• Finar, I. L. Organic Chemistry (Volume 1), Dorling Kindersley (India) Pvt. Ltd. (Pearson Education).
• Kalsi, P. S. Stereochemistry Conformation and Mechanism; New Age International, 2005.

PRACTICAL: C-3 LAB.
1. Checking the calibration of the thermometer.
2. Purification of organic compounds by crystallization using the following solvents: • Water
 • Alcohol
 • Alcohol-Water
3. Determination of the melting points of above compounds and unknown organic compounds (Kjeldahl method and electrically heated melting point apparatus).
4. Effect of impurities on the melting point mixed melting point of two unknown organic compounds.
5. Determination of boiling point of liquid compounds. (boiling point lower than and more than 100C by distillation and capillary method)
6. Chromatography
 - Separation of a mixture of two amino acids by ascending and horizontal paper chromatography.
 - Separation of a mixture of two sugars by ascending paper chromatography.
 - Separation of a mixture of o- and p-nitrophenol or o- and p-aminophenol by thin layer chromatography (TLC).

Reference Books:

C-4: PHYSICAL CHEMISTRY-II
(Credits-6: Theory-4, Practical-2)-Max. Marks: 100
 THEORY (Each class 1 hr.): Marks-70
 PRACTICAL (Each class 2 hrs.): Marks-30
 Lectures: 60 (40 Theory + 20 Practical classes)

Unit-I: Chemical thermodynamics
Intensive and extensive variables; state and path functions; isolated, closed and open systems; zeroth law of thermodynamics. First law: Concept of heat, q, work, w, internal energy, U, and statement of first law; enthalpy, H, relation between heat capacities, calculations of q, w, U and H for reversible, irreversible and free expansion of gases (ideal and van der Waals) under isothermal and adiabatic conditions. Thermochemistry: Heats of reactions: standard states; enthalpy of formation of molecules and ions and enthalpy of combustion and its applications; calculation of bond energy, bond dissociation energy and resonance energy from thermochemical data, effect of temperature (Kirchhoffs equations) and pressure on enthalpy of reactions. (14 Lectures)

Unit-II: Second Law: Concept of entropy; thermodynamic scale of temperature, statement of the second law of thermodynamics; molecular and statistical interpretation of entropy. Calculation of entropy change for reversible and irreversible processes. Third Law: Statement of third law, concept of residual entropy, calculation of absolute entropy of molecules. Free Energy Functions: Gibbs and Helmholtz energy; variation of S, G, A with T, V, P; Free energy change and spontaneity. Relation between Joule-Thomson coefficient and other thermodynamic parameters; inversion temperature; Gibbs-Helmholtz equation; Maxwell 17 relations; thermodynamic equation of state. (14 Lectures)

Unit-III: Systems of variable composition
Partial molar quantities, dependence of thermodynamic parameters on composition; Gibbs Duhem equation, chemical potential of ideal mixtures, change in thermodynamic functions in mixing of ideal gases. Chemical equilibrium, Criteria of thermodynamic equilibrium, degree of advancement of reaction, chemical equilibria in ideal gases, concept of fugacity. Thermodynamic derivation of relation between Gibbs free energy of reaction and reaction quotient (vant Hoff's reaction). Equilibrium constants and their quantitative dependence on temperature, pressure and concentration. Free energy of mixing and spontaneity; thermodynamic derivation of relations between the various equilibrium
constants K_p, K_c and K_x. Le Chatelier principle (quantitative treatment) and its applications. (18 Lectures)

Unit-IV: Solutions and Colligative Properties
Dilute solutions; lowering of vapour pressure, Raoult's and Henry's Laws and their applications. Thermodynamic derivation using chemical potential to derive relations between the four colligative properties [(i) relative lowering of vapour pressure, (ii) elevation of boiling point, (iii) Depression of freezing point, (iv) osmotic pressure] and amount of solute. Applications in calculating molar masses of normal, dissociated and associated solutes in solution. (14 Lectures)

Reference Books:

PRACTICAL: C-4 LAB.

THERMOCHEMISTRY
(a) Determination of heat capacity of a calorimeter for different volumes using change of enthalpy data of a known system (method of back calculation of heat capacity of calorimeter from known enthalpy of solution or enthalpy of neutralization).
(b) Determination of heat capacity of the calorimeter and enthalpy of neutralization of hydrochloric acid with sodium hydroxide.
(c) Calculation of the enthalpy of ionization of ethanoic acid.
(d) Determination of heat capacity of the calorimeter and integral enthalpy (endothermic and exothermic) solution of salts.
(e) Determination of basicity/proticity of a polyprotic acid by the thermochemical method in terms of the changes of temperatures observed in the graph of temperature versus time for different additions of a base. Also calculate the enthalpy of neutralization of the first step.
(f) Determination of enthalpy of hydration of copper sulphate.
(g) Study of the solubility of benzoic acid in water and determination of H.

Reference Books:
UNIT-I: General Principles of Metallurgy

Acids and Bases
Brnsted-Lowry concept of acid-base reactions, solvated proton, relative strength of acids, types of acid-base reactions, Lewis acid-base concept, Classification of Lewis acids, Hard and Soft Acids and Bases (HSAB) Application of HSAB principle. (8 Lectures)

UNIT-II: Chemistry of s and p Block Elements-I
Inert pair effect, Relative stability of different oxidation states, diagonal relationship and anomalous behaviour of first member of each group. Allotropy and catenation. Complex formation tendency of s and p block elements. Hydrides and their classification ionic, covalent and interstitial. Basic beryllium acetate and nitrate. (14 Lectures)

UNIT-III: Chemistry of s and p Block Elements-II
Study of the following compounds with emphasis on structure, bonding, preparation, properties and uses. Boric acid and borates, boron nitrides, borohydrides (diborane) carboranes and graphitic compounds, silanes. Oxides and oxoacids of nitrogen, Phosphorus and chlorine. Peroxo acids of sulphur, interhalogen compounds, polyhalide ions, pseudohalogens and basic properties of halogens. (14 Lectures)

UNIT-IV: Noble Gases
Occurrence and uses, rationalization of inertness of noble gases, Clathrates; preparation and properties of $XeF_2, XeF_4 and XeF_6$; Nature of bonding in noble gas compounds (Valence bond treatment and MO treatment for XeF_2). Molecular shapes of noble gas compounds (VSEPR theory). (8 Lectures)

Inorganic Polymers:
Types of inorganic polymers, comparison with organic polymers, synthesis, structural aspects and applications of silicones and siloxanes. Borazines, silicates and phosphazenes, and polysulphates. (8 Lectures)

Reference Books:
PRACTICAL: C-5 LAB.

(A) Iodo / Iodimetric Titrations
(i) Estimation of Cu(II) and $K_2Cr_2O_7$ using sodium thiosulphate solution (Iodimetrically).
(ii) Estimation of available chlorine in bleaching powder iodometrically.

(B) Inorganic preparations
(i) Cuprous chloride, Cu_2Cl_2.
(ii) Preparation of manganese(III) phosphate, $MnPO_4.H_2O$.
(iii) Preparation of aluminium potassium sulphate $K_2SO_4.Al_2(SO_4)_2.24H_2O$ (Potash alum).

Reference Books:
• Vogel, A.I. A Textbook of Quantitative Inorganic Analysis, ELBS. 1978
UNIT-I: Chemistry of Halogenated Hydrocarbons
Alkyl halides: Methods of preparation, nucleophilic substitution reactions SN1, SN2 and SNi mechanisms with stereochemical aspects and effect of solvent etc.; nucleophilic substitution vs. elimination. Aryl halides: Preparation, including preparation from diazonium salts, nucleophilic aromatic substitution; SNAr, Benzyne mechanism. Relative reactivity of alkyl, allyl/benzyl, vinyl and aryl halides towards nucleophilic substitution reactions. Organometallic compounds of Mg and Li. Use in synthesis of organic compounds. (16 Lectures)

UNIT-II: Alcohols, Phenols, Ethers and Epoxides
Alcohols: preparation, properties and relative reactivity of 1, 2, 3 alcohols, Bouvaelt-Blanc Reduction; Preparation and properties of glycols: Oxidation by periodic acid and lead tetraacetate, Pinacol-Pinacolone rearrangement; Phenols: Preparation and properties; Acidity and factors effecting it, Ring substitution reactions, Reimer-Tiemann and Kolbes-Schmidt Reactions, Fries and Claisen rearrangements with mechanism; Ethers and Epoxides: Preparation and reactions with acids. Reactions of epoxides with alcohols, ammonia derivatives and LiAlH4 (16 Lectures)

UNIT-III: Carbonyl Compounds
Structure, reactivity and preparation: Nucleophilic additions, Nucleophilic addition-elimination reactions with ammonia derivatives with mechanism; Mechanisms of Aldol and Benzoin condensation, Knoevenagel condensation, Perkin, Cannizzaro and Wittig reaction, Beckmann rearrangements, haloform reaction and Baeyer Villiger oxidation, - substitution reactions, oxidations and reductions (Clemmensen, Wolff-Kishner, LiAlH4, NaBH4, MPV.; Addition reactions of unsaturated carbonyl compounds: Michael addition. Active methylene compounds: Keto-enol tautomerism. Preparation and synthetic applications of diethyl malonate and ethyl acetoacetate. (14 Lectures)

UNIT-IV: Carboxylic Acids and their Derivatives
Preparation, physical properties and reactions of monocarboxylic acids: Typical reactions of dicarboxylic acids, hydroxy acids and unsaturated acids: succinic, lactic, malic, tartaric, citric, maleic and fumaric acids; Preparation and reactions of acid chlorides, anhydrides, esters and amides; Comparative study of nucleophilic substitution at acyl group -Mechanism of acidic and alkaline hydrolysis of esters, Claisen condensation, Dieckmann and Reformatsky reactions, Hofmann-bromamide degradation and Curtius rearrangement. (10 Lectures)

Sulphur containing compounds
Preparation and reactions of thiols, thioethers. (4 Lectures)

Reference Books:
PRACTICAL: C-6 LAB.

1. Functional group tests for alcohols, phenols, carbonyl and carboxylic acid group.
2. Organic preparations:
 (i) Acetylation of one of the following compounds: amines (aniline, o-, m-, p-toluidines and o-, m-, p-anisidine) and phenols (naphthol, vanillin, salicylic acid) by any one method:
 (a) Using conventional method.
 (b) Using green approach.
 (ii) Benzoylation of one of the following amines (aniline, o-, m-, p- toluidines and o-, m-, p-anisidine) and one of the following phenols (naphthol, resorcinol, p-cresol) by Schotten-Baumann reaction.
 (iii) Bromination of any one of the following:
 (a) Acetanilide by conventional methods.
 (b) Acetanilide using green approach (Bromate-bromide method).
 (iv) Nitration of any one of the following:
 (a) Acetanilide/nitrobenzene by conventional method.
 (b) Salicylic acid by green approach (using ceric ammonium nitrate).

The above derivatives should be prepared using 0.5-1gm. of the organic compound. The solid samples must be collected and may be used for recrystallization, melting point and TLC.

Reference Books:

C-7: PHYSICAL CHEMISTRY-III
(Credits-6: Theory-4, Practical-2)-Max. Marks: 100
THEORY (Each class 1 hr.): Marks-70
PRACTICAL (Each class 2 hrs.): Marks-30
Lectures: 60 (40 Theory + 20 Practical classes))

UNIT-I: Phase Equilibria-I
Concept of phases, components and degrees of freedom, derivation of Gibbs Phase Rule for non-reactive and reactive systems; Clausius-Clapeyron equation and its applications to solid-liquid, liquid-vapour and solid-vapour equilibria, phase diagram for one component systems, with applications (H₂O and sulphur system). Phase diagrams for systems of solid-liquid equilibria involving eutectic, congruent and incongruent melting points, solid solutions (Pb-Ag system, desilverisation of lead) (14 Lectures)

UNIT-II: Phase Equilibria-II
Three component systems, water-chloroform-acetic acid system, triangular plots. Binary solutions: Gibbs-Duhem-Margules equation, its derivation and applications to fractional distillation of binary
miscible liquids (ideal and non-ideal), azeotropes, partial miscibility of liquids, CST, miscible pairs, steam distillation. Nernst distribution law: its derivation and applications. (14 Lectures)

UNIT-III: Chemical Kinetics
Order and molecularity of a reaction, rate laws in terms of the advancement of a reaction, differential and integrated form of rate expressions up to second order reactions, experimental methods of the determination of orders, kinetics of complex reactions (integrated rate expressions up to first order only): (i) Opposing reactions (ii) parallel reactions and (iii) consecutive reactions and their differential rate equations (steady-state approximation in reaction mechanisms) (iv) chain reactions. Temperature dependence of reaction rates; Arrhenius equation; activation energy. Collision theory of reaction rates, qualitative treatment of the theory of absolute reaction rates. (18 Lectures)

UNIT-IV: Catalysis
Types of catalyst, specificity and selectivity, mechanisms of catalyzed reactions at solid surfaces; effect of particle size and efficiency of nanoparticles as catalysts. Enzyme catalysis, Michaelis-Menten mechanism, acid-base catalysis. (8 Lectures)

Surface chemistry
Physical adsorption, chemisorption, adsorption isotherms (Langmuir, Freundlich and Gibbs isotherms), nature of adsorbed state. (6 Lectures) Reference Books:
• Assael, M. J.; Goodwin, A. R. H.; Stamatoudis, M.; Wakeham, W. A. & Will, S.
• Zundhal, S.S. Chemistry concepts and applications Cengage India (2011).
• Ball, D. W. Physical Chemistry Cengage India (2012).

PRACTICAL: C-7 LAB.
I. Distribution of acetic/ benzoic acid between water and cyclohexane.
II. Study the equilibrium of at least one of the following reactions by the distribution method:
 \[I_2(aq) + I^- \rightarrow I_3^-(aq) \]
 \[Cu_2 + (aq) + nNH_3 \rightarrow Cu(NH_3)_n \]
III. Study the kinetics of the following reactions.
 (1) Integrated rate method:
 a. Acid hydrolysis of methyl acetate with hydrochloric acid.
 b. Saponification of ethyl acetate.
 (2) Compare the strengths of HCl and H2SO4 by studying kinetics of hydrolysis of methyl acetate.

Adsorption
Verify the Freundlich and Langmuir isotherms for adsorption of acetic acid on activated charcoal.

Reference Books:

SEMESTER- IV

C-8: INORGANIC CHEMISTRY-III
(Credits-6: Theory-4, Practical-2)-Max. Marks: 100
THEORY (Each class 1 hr.): Marks-70
PRACTICAL (Each class 2 hrs.): Marks-30
Lectures: 60 (40 Theory + 20 Practical classes)

UNIT-I: Coordination Chemistry
Werners theory, valence bond theory (inner and outer orbital complexes), electroneutrality principle and back bonding. Crystal field theory, measurement of CFSE weak and strong fields, pairing energies, factors affecting the magnitude of 10 Dq in octahedral vs. tetrahedral coordination, tetragonal distortions from octahedral geometry, Jahn-Teller theorem, square planar geometry. Qualitative aspect of ligand field and MO Theory. IUPAC nomenclature of coordination compounds, isomerism in coordination compounds. Stereochemistry of complexes with 4 and 6 coordination numbers. Chelate effect, Labile and inert complexes. (20 Lectures)

UNIT-II: Transition Elements-I
General group trends with special reference to electronic configuration, colour, variable valency, magnetic and catalytic properties, ability to form complexes. Stability of various oxidation states and e.m.f. (Latimer & Bsworth diagrams). Difference between the first, second and third transition series. (12 Lectures)

UNIT-III: Transition Elements-II
Chemistry of Ti, V, Cr Mn, Fe and Co in various oxidation states (excluding their metallurgy). (12 Lectures)

UNIT-IV: Lanthanoids and Actinoids
Electronic configuration, oxidation states, colour, spectral and magnetic properties, lanthanide contraction, separation of lanthanides (ion-exchange method only). General features of actinoids, separation of Np, Pm, Am from U. (6 Lectures)

Bioinorganic Chemistry
Metal ions present in biological systems, classification of elements according to their action in biological system. Na/K-pump, carbonic anhydrase and carboxypeptidase. Excess and deficiency of some trace metals. Toxicity of metal ions (Hg, Pb, Cd and As), reasons for toxicity, Use of chelating agents in medicine. Iron and its application in bio-systems, Haemoglobin; Storage and transfer of iron. (10 Lectures)
Reference Books:

PRACTICAL: C-8 LAB.

Gravimetric Analysis:
i. Estimation of nickel(II) using Dimethylglyoxime (DMG).
ii. Estimation of copper as CuSCN.
iii. Estimation of iron as Fe₂O₃ by precipitating iron as Fe(OH)₃.
iv. Estimation of Al(III) by precipitating with oxine and weighing as Al(oxine)₃ (aluminium oxinate).

Chromatography of metal ions
Principles involved in chromatographic separations. Paper chromatographic separation of following metal ions:
i. Ni(II) and Co(II)
ii. Fe(III) and Al(III)

Reference Book:

C-9: ORGANIC CHEMISTRY-III
(Credits-6: Theory-4, Practical-2)-Max. Marks: 100
THEORY (Each class 1 hr.): Marks-70
PRACTICAL (Each class 2 hrs.): Marks-30
Lectures: 60 (40 Theory + 20 Practical classes)

UNIT-I: Nitrogen Containing Functional Groups
Preparation and important reactions of nitro and compounds, nitriles. Amines: Effect of substituent and solvent on basicity; Preparation and properties: Gabriel phthalimide synthesis, Carbylamine reaction, Mannich reaction, Hoffmanns exhaustive methylation, Hofmann-elimination reaction; Distinction between 1, 2 and 3 amines with Hinsberg reagent and nitrous acid. (14 Lectures)

UNIT-II: Diazonium Salts
Preparation and their synthetic applications.
Polynuclear Hydrocarbons
Reactions of naphthalene and anthracene Structure, Preparation and structure elucidation and important derivatives of naphthalene and anthracene. Polynuclear hydrocarbons. (12 Lectures)

UNIT-III: Heterocyclic Compounds
Classification and nomenclature, Structure, aromaticity in 5-numbered and 6-membered rings containing one heteroatom; Synthesis, reactions and mechanism of substitution reactions of: Furan,
Pyrrole (Paal-Knorr synthesis, Knorr pyrrole synthesis, Hantzsch synthesis), Thiophene, Pyridine (Hantzsch synthesis), Pyrimidine. Fischer indole synthesis and Madelung synthesis, structure of quinoline and isoquinoline. Derivatives of furan: Furfural and furoic acid (preparation only). (18 Lectures)

UNIT-IV: Alkaloids
Natural occurrence, General structural features, Isolation and their physiological action Hoffmanns exhaustive methylation, Emdes modification, Structure elucidation and synthesis of Hygrine and Nicotine. Medicinal importance of Nicotine, Hygrine, Quinine, Morphine, Cocaine, and Reserpine. (8 Lectures) Terpenes Occurrence, classification, isoprene rule; Elucidation of stucture and synthesis of Citral, Neral and -terpineol. (8 Lectures)

Reference Books:
• Finar, I. L. Organic Chemistry (Volume 1), Dorling Kindersley (India) Pvt. Ltd. (Pearson Education).
• Finar, I. L. Organic Chemistry (Volume 2: Stereochemistry and the Chemistry of Natural Products), Dorling Kindersley (India) Pvt. Ltd. (Pearson Education).
• Acheson, R.M. Introduction to the Chemistry of Heterocyclic compounds, John Wely & Sons (1976).

PRACTICAL: C-9 LAB.
2. Functional group test for nitro, amine and amide groups.
3. Qualitative analysis of unknown organic compounds containing simple functional groups (alcohols, carboxylic acids, phenols and carbonyl compounds).

Reference Books:

C-10: PHYSICAL CHEMISTRY-IV
(Credits-6: Theory-4, Practical-2)-Max. Marks: 100
UNIT-I: Conductance-I

UNIT-II: Conductance-II
Ionic velocities, mobilities and their determinations, transference numbers and their relation to ionic mobilities, determination of transference numbers using Hittorf and Moving Boundary methods. Applications of conductance measurement: (i) degree of dissociation of weak electrolytes, (ii) ionic product of water (iii) solubility and solubility product of sparingly soluble salts, (iv) conductometric titrations, and (v) hydrolysis constants of salts. (16 Lectures)

UNIT-III: Electrochemistry-I
Quantitative aspects of Faradays laws of electrolysis, rules of oxidation/reduction of ions based on half-cell potentials, applications of electrolysis in metallurgy and industry. Chemical cells, reversible and irreversible cells with examples. Electromotive force of a cell and its measurement, Nernst equation; Standard electrode (reduction) potential and its application to different kinds of half-cells. Application of EMF measurements in determining free energy, enthalpy and entropy of a cell reaction, (ii) equilibrium constants, and (iii) pH values, using hydrogen, quinone-hydroquinone, glass electrodes. (18 Lectures)

UNIT-IV: Electrochemistry-II
Concentration cells with and without transference, liquid junction potential; determination of activity coefficients and transference numbers. Qualitative discussion of potentiometric titrations (acid-base, redox, precipitation). Electrical properties of atoms and molecules Basic ideas of electrostatics, Electrostatics of dielectric media. Clausius-Mosotti equation and Lorenz-Laurentz equation (no derivation), Dipole moment and molecular polarizabilities and their measurements. (14 Lectures)

Reference Books:

PRACTICAL: C-10 LAB.

Conductometry
I. Determination of cell constant.
II. Determination of equivalent conductance, degree of dissociation and dissociation constant of a weak acid.
III. Perform the following conductometric titrations:
 i. Strong acid vs. strong base
 ii. Weak acid vs. strong base
 iii. Strong acid vs. weak base

Potentiometry
I. Perform the following potentiometric titrations:
 i. Strong acid vs. strong base
 ii. Weak acid vs. strong base
 iii. Dibasic acid vs. strong base

Reference Books:

SEMESTER- V

C-11: ORGANIC CHEMISTRY-IV
(Credits-6: Theory-4, Practical-2)-Max. Marks: 100
THEORY (Each class 1 hr.): Marks-70
PRACTICAL (Each class 2 hrs.): Marks-30
Lectures: 60 (40 Theory + 20 Practical classes)

UNIT-I: Nucleic Acids
Components of nucleic acids, Nucleosides and nucleotides; Structure, synthesis and reactions of: Adenine, Guanine, Cytosine, Uracil and Thymine; Structure of polynucleotides. (9 Lectures)

Enzymes
Introduction, classification and characteristics of enzymes. Salient features of active site of enzymes. Mechanism of enzyme action (taking trypsin as example), factors affecting enzyme action, coenzymes and cofactors and their role in biological reactions, specificity of enzyme action (including stereospecificity), enzyme inhibitors and their importance, phenomenon of inhibition (competitive, uncompetitive and non-competitive inhibition including allosteric inhibition). (8 Lectures)

UNIT-II: Amino Acids, Peptides and Proteins
of peptides using N-protecting, C-protecting and C-activating groups -Solid-phase synthesis (16 Lectures)

UNIT-III: Lipids
Introduction to oils and fats; common fatty acids present in oils and fats, Hydrogenation of fats and oils, Saponification value, acid value, iodine number. Reversion and rancidity. (8 Lectures)
Concept of Energy in Biosystems

UNIT-IV: Pharmaceutical Compounds: Structure and Importance
Classification, structure and therapeutic uses of antipyretics: Paracetamol (with synthesis), Analgesics: Ibuprofen (with synthesis), Antimalarials: Chloroquine (with synthesis). An elementary treatment of Antibiotics and detailed study of chloramphenicol, Medicinal values of curcumin (haldi), azadirachtin (neem), vitamin C and antacid (ranitidine). (12 Lectures)

Reference Books:

PRACTICAL: C-11 LAB.

1. Preparations of the following compounds:
2. Saponification value of an oil or a fat.
3. Determination of Iodine number of an oil/ fat.

Reference Books:
• Arthur, I. Vogel, Quantitative Organic Analysis, Pearson.

C-12: PHYSICAL CHEMISTRY-V
(Credits-6: Theory-4, Practical-2)-Max. Marks: 100
THEORY (Each class 1 hr.): Marks-70
PRACTICAL (Each class 2 hrs.): Marks-30
Lectures: 60 (40 Theory + 20 Practical classes)

UNIT-I: Quantum Chemistry
Postulates of quantum mechanics, quantum mechanical operators, Schrödinger equation and its application to free particle and particle-in-a-box (rigorous treatment), quantization of energy levels,
zero-point energy and Heisenberg Uncertainty principle; wave functions, probability distribution functions, nodal properties. Extension to three dimensional boxes, separation of variables, degeneracy. Qualitative treatment of simple harmonic oscillator model of vibrational motion: Setting up of Schrödinger equation and discussion of solution and wave functions. Vibrational energy of diatomic molecules and zero-point energy. Angular momentum: Commutation rules, quantization of square of total angular momentum and z-component. Rigid rotator model of rotation of diatomic molecule. Schrödinger equation, transformation to spherical polar coordinates. Separation of variables (Preliminary treatment). Qualitative treatment of hydrogen atom and hydrogen-like ions: setting up of Schrödinger equation in spherical polar coordinates, radial part, quantization of energy (only final energy expression). Average and most probable distances of electron from nucleus. (18 Lectures)

UNIT-II: Chemical Bonding
Chemical bonding: Covalent bonding, valence bond and molecular orbital approaches, LCAO-MO treatment of \(H_2^+\). Bonding and antibonding orbitals. Qualitative extension to \(H_2\). Comparison of LCAO-MO and VB treatments of \(H_2\) (only wavefunctions, detailed solution not required) and their limitations. Qualitative description of LCAO-MO treatment of homonuclear and heteronuclear diatomic molecules (HF, LiH). Localised and non-localised molecular orbitals treatment of triatomic (BeH2, H2O) molecules. Qualitative MO theory and its application to AH2 type molecules. (12 Lectures)

UNIT-III: Molecular Spectroscopy-I
Interaction of electromagnetic radiation with molecules and various types of spectra; Born-Oppenheimer approximation. Rotation spectroscopy: Selection rules, intensities of spectral lines, determination of bond lengths of diatomic and linear triatomic molecules, isotopic substitution.
Vibrational spectroscopy: Classical equation of vibration, computation of force constant, amplitude of diatomic molecular vibrations, anharmonicity, Morse potential, dissociation energies, fundamental frequencies, overtones, hot bands, degrees of freedom for polyatomic molecules, modes of vibration.
Vibration-rotation spectroscopy: diatomic vibrating rotator, P, Q, R branches.
Raman spectroscopy: Qualitative treatment of Rotational Raman effect; Effect of nuclear spin, Vibrational Raman spectra, Stokes and anti-Stokes lines; their intensity difference, rule of mutual exclusion. (16 Lectures)

UNIT-IV: Molecular Spectroscopy-II
Electronic spectroscopy: Franck-Condon principle, electronic transitions, singlet and triplet states, fluorescence and phosphorescence, dissociation and predissociation. (6 Lectures)

Photochemistry
Characteristics of electromagnetic radiation, Lambert-Beers law and its limitations, physical significance of absorption coefficients. Laws, of photochemistry, quantum yield, actinometry, examples of low and high quantum yields, photochemical equilibrium and the differential rate of photochemical reactions, photosensitised reactions, quenching. Role of photochemical reactions in biochemical processes, photostationary states, chemiluminescence. (8 Lectures)

Reference Books:
• Banwell, C. N. & McCash, E. M. Fundamentals of Molecular Spectroscopy 4th Ed. Tata McGraw-
Colourimetry
1. Determine the concentration of HCl against 0.1 N NaOH spectrophotometrically. 2. To find the strength of given ferric ammonium sulfate solution of (0.05 M) by using EDTA spectrophotometrically. 3. To find out the strength of CuSO₄ solution by titrating with EDTA spectrophotometrically. 4. To determine the concentration of Cu(II) and Fe(III) solution photometrically by titrating with EDTA.

Reference Books:
- Experimental Physical Chemistry by J. N. Gurtu, R. Kapoor.

SEMESTER- VI

C-13: INORGANIC CHEMISTRY-IV
(Credits-6: Theory-4, Practical-2)-Max. Marks: 100
THEORY (Each class 1 hr.): Marks-70
PRACTICAL (Each class 2 hrs.): Marks-30
Lectures: 60 (40 Theory + 20 Practical classes)

UNIT-I: Organometallic Compounds-I

UNIT-II: Organometallic Compounds-II
Metal Alkyls: Important structural features of methyl lithium (tetramer) and trialkyl aluminium
(dimer), concept of multicentre bonding in these compounds. Role of triethylaluminium in polymerisation of ethene (Ziegler Natta Catalyst). Species present in ether solution of Grignard reagent and their structures. Ferrocene: Preparation and reactions (acetylation, alkylation, metallation, Mannich Condensation), structure and aromaticity, comparison of aromaticity and reactivity with that of benzene. (14 Lectures)

UNIT-III: Theoretical Principles in Qualitative Analysis (H₂S Scheme)
Basic principles involved in analysis of cations and anions and solubility products, common ion effect. Principles involved in separation of cations into groups and choice of group reagents. Interfering anions (fluoride, borate, oxalate and phosphate) and need to remove them after Group II. (10 Lectures)

Catalysis by Organometallic Compounds
Study of the following industrial processes and their mechanism:
1. Alkene hydrogenation (Wilkinson's Catalyst).
2. Hydroformylation (Co salts).
4. Synthetic gasoline (Fischer Tropsch reaction). (8 Lectures)

UNIT-IV: Reaction Kinetics and Mechanism
Introduction to inorganic reaction mechanisms. Substitution reactions in square planar complexes, Trans-effect and its applications, theories of trans effect, Mechanism of nucleophilic substitution in square planar complexes. Thermodynamic and kinetic stability, Kinetics of octahedral substitution (classification of metal ions based on water exchange rate), General mechanism of substitution in octahedral complexes (D, I, Id, la). (14 Lectures)

Reference Books:
PRACTICAL: C-13 LAB.

Qualitative semimicro analysis of mixtures containing 3 anions and 3 cations. Emphasis should be given to the understanding of the chemistry of different reactions. The following radicals are suggested:

\[CO_3^{2-}, NO_2^-, S^-, SO_4^{2-}, S_2O_3^{2-}, CH_3COO^-, F^-, Cl^-, Br^-, I^-, NO_3^-, BO_3^-, C_2O_4^{2-}, PO_4^{3-}, NH_4^+, K^+, Pb_2^+, Cu^2+, Cd^2+, Bi^3+, Sn^{2+}, Sb^{3+}, Fe^{3+}, Al^{3+}, Cr^{3+}, Zn^{2+}, Mn^{2+}, Co^{2+}, Ni^{2+}, Ba^{2+}, Sr^{2+}, Ca^{2+}, Mg^{2+}. \]

Mixtures should preferably contain one interfering anion, or insoluble component \((BaSO_4, SrSO_4, PbSO_4, CaF_2 or Al_2O_3)\) or combination of anions e.g. \(CO_3^{2-}\) and \(SO_4^{2-}\), \(NO_2^-\) and \(NO_3^-, Cl^-\) and \(Br^-\), \(Cl^-\) and \(I^-\), \(Br^-\) and \(I^-\), \(NO_3^-\) and \(Br^-\), \(NO_3^-\) and \(I^-\). Spot tests should be done whenever possible.

Reference Books:
- Vogels Qualitative Inorganic Analysis, Revised by G. Svehla.
- Marr & Rockett Inorganic Preparations.
UNIT-I: Organic Spectroscopy-I

UV Spectroscopy: Types of electronic transitions, max, Chromophores and Auxochromes, Bathochromic and Hypsochromic shifts, Intensity of absorption; Application of Woodward rules for calculation of max for the following systems: , the unsaturated aldehydes: ketones, carboxylic acids and esters; Conjugated dienes: alicyclic, homoannular and heteroannular; Extended conjugated systems (aldehydes, ketones and dienes); distinction between cis and trans isomers.

IR Spectroscopy: Fundamental and non-fundamental molecular vibrations; IR absorption positions of O, N and S containing functional groups; Effect of H-bonding, conjugation, resonance and ring size on IR absorptions; Fingerprint region and its significance; application in functional group analysis. (18 Lectures)

UNIT-II: Organic Spectroscopy-II

NMR Spectroscopy: Basic principles of Proton Magnetic Resonance, chemical shift and factors influencing it; Spin-spin coupling and coupling constant; Anisotropic effects in alkene, alkyne, aldehydes and aromatics; Interpretation of NMR spectra of simple compounds. Mass Spectroscopy - Basic principle, Fragmentation pattern, Instrumentation, Determination of m/e ratio. Application of Mass Spectroscopy on CH4, C2H6, n-butane and neo-pentane. Applications of IR, UV and NMR for identification of simple organic molecules. (12 Lectures)

UNIT-III: Carbohydrates

Occurrence, classification and their biological importance. Monosaccharides: Constitution and absolute configuration of glucose and fructose, epimers and anomers, mutarotation, determination of ring size of glucose and fructose, Haworth projections and conformational structures; Interconversions of aldoses and ketoses; Killiani-Fischer synthesis and Ruff degradation; Disaccharides Structure elucidation of maltose. Polysaccharides Elementary treatment of starch, cellulose. (8 Lectures)

Dyes

Classification, colour and constitution; Mordant and Vat dyes; Chemistry of dyeing. Synthesis and applications of: Azo dyes Methyl orange and Congo red (mechanism of Diazo Coupling); Triphenyl methane dyes - Malachite Green, and crystal violet; Phthalein dyes Phenolphthalein and Fluorescein; Natural dyes Alizarin and Indigo; Edible dyes with examples. (8 Lectures)

UNIT-IV: Polymers

Introduction and classification including di-block, tri-block and amphiphilic polymers; Number average molecular weight, Weight average molecular weight, Degree of polymerization, Polydispersity Index. Polymerisation reactions - Addition and condensation - Mechanism of cationic, anionic and free radical addition polymerization; Metallocene-based Ziegler-Natta polymerisation of alkenes; Preparation and applications of plastics thermosetting (phenol-formaldehyde, Polyurethanes) and thermosoftening (PVC, polythene); Fabrics natural and synthetic (acrylic, polyamido, polyester); Rubbers natural and synthetic: Buna-S and Neoprene; Vulcanization; Polymer additives; Biodegrad-
able and conducting polymers with examples. (14 Lectures)

Reference Books:
• Billmeyer, F. W. Textbook of Polymer Science, John Wiley & Sons, Inc.
• Finar, I. L. Organic Chemistry (Volume 2: Stereochemistry and the Chemistry of Natural Products), Dorling Kindersley (India) Pvt. Ltd. (Pearson Education).
• Kemp, W. Organic Spectroscopy, Palgrave.

PRACTICAL: C-14 LAB.

1. Extraction of caffeine from tea leaves.
2. Preparation of sodium polyacrylate.
3. Preparation of urea formaldehyde.
5. Qualitative analysis of unknown organic compounds containing mono-functional groups (carbohydrates, aryl halides, aromatic hydrocarbons, nitro compounds, amines and amides) and simple bifunctional groups, for e.g. salicylic acid, cinnamic acid, nitrophenols etc.

Reference Books:
DISCIPLINE SPECIFIC ELECTIVE (DSE)

SEMESTER-V

DSE-1: POLYMER CHEMISTRY
(Credits-6: Theory-4, Practical-2)-Max. Marks: 100

THEORY (Each class 1 hr.): Marks-70
PRACTICAL (Each class 2 hrs.): Marks-30
Lectures: 60 (40 Theory + 20 Practical classes)

UNIT-I: Introduction and history of polymeric materials:
Different schemes of classification of polymers, Polymer nomenclature, Molecular forces and chemical bonding in polymers, Texture of Polymers. (4 Lectures)

Functionality and its importance:
Criteria for synthetic polymer formation, classification of polymerization processes, Relationships between functionality, extent of reaction and degree of polymerization. Bi-functional systems, Poly-functional systems. (8 Lectures)

UNIT-II: Kinetics of Polymerization:
Mechanism and kinetics of step growth, radical chain growth, ionic chain (both cationic and anionic) and coordination polymerizations, Mechanism and kinetics of copolymerization, polymerization techniques. (8 lectures)

Crystallization and crystallinity:
Determination of crystalline melting point and degree of crystallinity, Morphology of crystalline polymers, Factors affecting crystalline melting point. (4 Lectures)

Nature and structure of polymers-Structure property relationships. (2 Lectures)

UNIT-III: Determination of molecular weight of polymers
(Mn, Mw, etc.) by end group analysis, viscometry, light scattering and osmotic pressure methods. Molecular weight distribution and its significance. Polydispersity index. (8 Lectures)

Glass transition temperature (Tg) and determination of Tg
WLF equation, Factors affecting glass transition temperature (Tg). (8 Lectures)

UNIT-IV: Polymer Solution
Criteria for polymer solubility, Solubility parameter, Thermodynamics of polymer solutions, entropy, enthalpy, and free energy change of mixing of polymers solutions. (8 Lectures)

Properties of Polymers
(Physical, thermal & mechanical properties). Brief introduction to preparation, structure, properties and application of the following polymers: polyolefins, polystyrene and styrene copolymers, poly(vinyl chloride) poly(vinyl acetate), polyacrylamide, fluoro polymers (Teflon), polyamides (nylon-6 and nylon 6,6). Phenol formaldehyde resins (Bakelite, Novalac), polyurethanes, silicone polymers (polysiloxane), Polycarbonates, Conducting Polymers, (polychetylene, polyaniline). (10 Lectures)

Reference Books:
• Seymours Polymer Chemistry, Marcel Dekker, Inc.
PRACTICAL: DSE-1 LAB.

Polymer synthesis
1. Free radical solution polymerization of styrene (St) / Methyl Methacrylate (MMA) / Methyl Acrylate (MA) / Acrylic acid (AA).
 (a) Purification of monomer.
 (b) Polymerization using benzoyl peroxide (BPO) / 2,2-azo-bis-isobutylonitrile (AIBN).
3. Interfacial polymerization, preparation of polyester from isophthaloyl chloride (IPC) and phenolphthalein.
 (a) Preparation of IPC.
 (b) Purification of IPC.
 (c) Interfacial polymerization.
4. Redox polymerization of acrylamide.
5. Precipitation polymerization of acrylonitrile.
6. Preparation of urea-formaldehyde resin.
7. Preparations of novalac resin/resold resin.
8. Microscale Emulsion Polymerization of poly(methylacrylate).

Polymer characterization
1. Determination of molecular weight by viscometry:
 (a) Polyacrylamide-aq. NaNO2 solution
 (b) (Poly vinyl propylidine (PVP) in water
2. Determination of the viscosity-average molecular weight of poly(vinyl alcohol) (PVOH) and the fraction of head-to-head monomer linkages in the polymer.
3. Determination of molecular wt. by end group analysis: Polyethylene glycol (PEG) (OH group).
4. Determination of hydroxyl number of a polymer using colorimetric method.

Polymer analysis
1. Estimation of the amount of HCHO in the given solution by sodium sulphite method
2. Instrumental Techniques
3. IR studies of polymers
*at least 5 experiments to be carried out.

Reference Books:
- Malcohm P. Stevens, Polymer Chemistry: An Introduction, 3rd Ed.
- Petr Munk and Tejraj M. Aminabhavi, Introduction to Macromolecular Science, 2nd ed. John
Wiley & Sons (2002).

DSE-2: GREEN CHEMISTRY
(Credits-6: Theory-4, Practical-2)-Max. Marks: 100

THEORY (Each class 1 hr.): Marks-70
PRACTICAL (Each class 2 hrs.): Marks-30
Lectures: 60 (40 Theory + 20 Practical classes)

—bf UNIT-I: Introduction to Green Chemistry
What is Green Chemistry? Need for Green Chemistry. Goals of Green Chemistry. Limitations/Obstacles in the pursuit of the goals of Green Chemistry. (4 Lectures)

Principles of Green Chemistry and Designing a Chemical synthesis-I
Twelve principles of Green Chemistry with their explanations and examples with special emphasis on: Designing a Green Synthesis using these principles; Prevention of Waste/byproducts; maximum incorporation of the materials used in the process into the final products, Atom Economy, calculation of atom economy of the rearrangement, addition, substitution and elimination reactions. Prevention/minimization of hazardous/toxic products reducing toxicity. risk = (function) hazard exposure; waste or pollution prevention hierarchy. Green solvents supercritical fluids, water as a solvent for organic reactions, ionic liquids, fluorous biphasic solvent, PEG, solventless processes, immobilized solvents and how to compare greenness of solvents. (12 Lectures)

UNIT-II: Principles of Green Chemistry and Designing a Chemical synthesis-II
Explanation of principles with special emphasis on: Energy requirements for reactions alternative sources of energy: use of microwaves and ultrasonic energy. Selection of starting materials; avoidance of unnecessary derivatization careful use of blocking/protecting groups. Use of catalytic reagents (wherever possible) in preference to stoichiometric reagents; catalysis and green chemistry, comparison of heterogeneous and homogeneous catalysis, biocatalysis, asymmetric catalysis and photocatalysis. Prevention of chemical accidents designing greener processes, inherent safer design, principle of ISD What you dont have cannot harm you, greener alternative to Bhopal Gas Tragedy (safer route to carcarbaryl) and Flixiborough accident (safer route to cyclohexanol) subdivision of ISD, minimization, simplification, substitution, moderation and limitation. Strengthening/ development of analytical techniques to prevent and minimize the generation of hazardous substances in chemical processes. (14 Lectures)

UNIT-III: Examples of Green Synthesis/Reactions and some real world cases-I
Green Synthesis of the following compounds: adipic acid, catechol, disodium iminodiacetate (alternative to Strecker synthesis) Microwave assisted reactions in water: Hofmann Elimination, methyl benzoate to benzoic acid, oxidation of toluene and alcohols; microwave assisted reactions in organic solvents: Diels-Alder reaction and Decarboxylation reaction. Ultrasound assisted reactions: sonochemical Simmons-Smith Reaction (Ultrasonic alternative to Iodine). Surfactants for carbon dioxide replacing smog producing and ozone depleting solvents with CO2 for precision cleaning and dry cleaning of garments. Designing of Environmentally safe marine antifoulant. (14 Lectures)

UNIT-IV: Examples of Green Synthesis/Reactions and some real world cases-II
Rightfit pigment: synthetic azopigments to replace toxic organic and inorganic pigments. An efficient, green synthesis of a compostable and widely applicable plastic (poly lactic acid) made from corn. Healthier Fats and oil by Green Chemistry: Enzymatic Inter esterification for production of

157
no Trans-Fats and Oils
Development of Fully Recyclable Carpet: Cradle to Cradle Carpetsing (6 Lectures)

Future Trends in Green Chemistry
Oxidation reagents and catalysts; Biomimetic, multifunctional reagents; Combinatorial green chemistry; Proliferation of solventless reactions; co-crystal controlled solid state synthesis (C2S3); Green chemistry in sustainable development. (10 Lectures)

Reference Books:

PRACTICAL: DSE-2

1. Safer starting materials.
 • The Vitamin C clock reaction using Vitamin C tablets, tincture of iodine, hydrogen peroxide and liquid laundry starch.
 • Effect of concentration on clock reaction.
 • Preparation and characterization of nanoparticles (Ag, Au) using plant extract.
2. Using renewable resources
 • Preparation of biodiesel from vegetable oil.
3. Avoiding waste
 • Principle of atom economy.
 • Use of molecular model kit to stimulate the reaction to investigate how the atom economy can illustrate Green Chemistry.
 • Preparation of propene by two methods can be studied.
 (I) Triethylamine ion + OH$^-$ $\xrightarrow{H_2SO_4/\Delta}$ propene + trimethylpropene + water
 (II) 1-propanol \rightarrow propene + water
 • The other types of reactions, like addition, elimination, substitution and rearrangement should also be studied for the calculation of atom economy. 4. Use of enzymes as catalysts
 • Benzoin condensation using Thiamine Hydrochloride as a catalyst instead of cyanide
5. Alternative Green solvents
 • Diels Alder reaction in water
 • Reaction between furan and maleic acid in water and at room temperature rather than in benzene and reflux.
 • Extraction of D-limonene from orange peel using liquid CO$_2$ prepared form dry ice.
 • Mechanochemical solvent free synthesis of azomethines
4. Alternative sources of energy
 • Solvent free, microwave assisted one pot synthesis of phthalocyanine complex of Cu(II).
• Photoreduction of benzophenone to benzopinacol in the presence of sunlight.

Reference Books:
• Ryan, M.A. Introduction to Green Chemistry, Tinnesand; (Ed), American Chemical Society, Washington DC (2002).
• Cann, M.C. & Connelly, M. E. Real world cases in Green Chemistry, American Chemical Society (2008).
• Cann, M. C. & Thomas, P. Real world cases in Green Chemistry, American Chemical Society (2008).

DSE-3: INDUSTRIAL CHEMICALS AND ENVIRONMENT
(Credits-6: Theory-4, Practical-2)-Max. Marks: 100
THEORY (Each class 1 hr.): Marks-70
PRACTICAL (Each class 2 hrs.): Marks-30
Lectures: 60 (40 Theory + 20 Practical classes)

UNIT-I: Industrial Gases and Inorganic Chemicals
Industrial Gases: Large scale production, uses, storage and hazards in handling of the following gases: oxygen, nitrogen, argon, neon, helium, hydrogen, acetylene, carbon monoxide, chlorine, sulphur dioxide. Inorganic Chemicals: Manufacture, application and hazards in handling the following chemicals: hydrochloric acid, nitric acid, sulphuric acid, caustic soda, common salt, bleaching powder, sodium thiosulphate, hydrogen peroxide, potash alum, potassium dichromate and potassium permanganate. (10 Lectures)

bf Industrial Metallurgy
Preparation of metals (ferrous and nonferrous) and ultrapure metals for semiconductor technology. (4 Lectures)

UNIT-II: Environment and its segments

UNIT-III: Water Pollution: Hydrological cycle, water resources, aquatic ecosystems, Sources and nature of water pollutants, Techniques for measuring water pollution, Impacts of water pollution on hydrological and ecosystems. Water purification methods. Effluent treatment plants (primary, sec-
ondary and tertiary treatment). Industrial effluents from the following industries and their treatment: electroplating, textile, tannery, dairy, petroleum and petrochemicals, fertilizer. Sludge disposal. Industrial waste management, incineration of waste. Water treatment and purification (reverse osmosis, ion exchange). Water quality parameters for waste water, industrial water and domestic water. (16 Lectures)

UNIT-IV: Energy & Environment
Sources of energy: Coal, petrol and natural gas. Nuclear fusion/fission, solar energy, hydrogen, geothermal, tidal and hydel. Nuclear Pollution: Disposal of nuclear waste, nuclear disaster and its management. (10 Lectures)

Biocatalysis: Introduction to biocatalysis: Importance in green chemistry and chemical industry. (6 Lectures)

Reference Books:

PRACTICAL: DSE-3

1. Determination of dissolved oxygen in water.
2. Determination of Chemical Oxygen Demand (COD).
3. Determination of Biological Oxygen Demand (BOD).
4. Percentage of available chlorine in bleaching powder.
5. Measurement of chloride, sulphate and salinity of water samples by simple titration method (AgNO_3 and potassium chromate).
6. Estimation of total alkalinity of water samples (CO_3^{2-}, HCO_3^{-}) using double titration method.
8. Study of some of the common bio-indicators of pollution.
10. Preparation of borax/ boric acid.

DSE-4: DISSERTATION/PROJECT WORK
Marks: 100
SKILL ENHANCEMENT COURSES (SEC)

SEMESTER- III

SEC-I: PESTICIDE CHEMISTRY
(Credits: 02)- Max. Marks: 50
30 Lectures(Each Lecture 1 hr.)

General introduction to pesticides (natural and synthetic), benefits and adverse effects, changing concepts of pesticides, structure activity relationship, synthesis and technical manufacture and uses of representative pesticides in the following classes: Organochlorines (DDT, Gammexene,); Organophosphates (Malathion, Parathion); Carbamates (Carbofuran and carbaryl); Quinones (Chloranil), Anilides (Alachlor and Butachlor).

Practical
• To calculate acidity/alkalinity in given sample of pesticide formulations as per BIS specifications.
• Preparation of simple organophosphates, phosphonates and thiophosphates.

Reference Book:
• R. Cremlyn: Pesticides, John Wiley.

SEMESTER- IV

SEC-II: FUEL CHEMISTRY
(Credits: 02)- Max. Marks: 50
30 Lectures(Each Lecture 1 hr.)

Lubricants: Classification of lubricants, lubricating oils (conducting and non-conducting) Solid and semisolid lubricants, synthetic lubricants. Properties of lubricants (viscosity index, cloud point, pour point) and their determination.

large Reference Books:
• E. Stocchi: Industrial Chemistry, Vol -I, Ellis Horwood Ltd. UK.
GENERIC ELECTIVE (GE)

B.Sc. (Hons.) Students other than Chemistry Honours will opt four Chemistry GE Papers.

SEMESTER-I

GE-I: ATOMIC STRUCTURE, BONDING, GENERAL ORGANIC CHEMISTRY & ALIPHATIC HYDROCARBONS

(Credits-6: Theory-4, Practical-2)-Max. Marks: 100

THEORY (Each class 1 hr.): Marks-70
PRACTICAL (Each class 2 hrs.): Marks-30
Lectures: 60 (40 Theory + 20 Practical classes)

SECTION A: INORGANIC CHEMISTRY-1 (30 Periods)

Unit-I: bf Atomic Structure
What is Quantum mechanics? Time independent Schrodinger equation and meaning of various terms in it. Significance of ψ and ψ^2, Schrdinger equation for hydrogen atom. Radial and angular parts of the hydogenic wave functions (atomic orbitals) and their variations for 1s, 2s, 2p, 3s, 3p and 3d orbitals (Only graphical representation). Significance of quantum numbers, orbital angular momentum and quantum numbers ml and ms. Shapes of s, p and d atomic orbitals, nodal planes.
Discovery of spin, spin quantum number (s) and magnetic spin quantum number (ms). Rules for filling electrons in various orbitals, Electronic configurations of the atoms. Stability of half-filled and completely filled orbitals, concept of exchange energy. Relative energies of atomic orbitals, Anomalous electronic configurations. (14 Lectures)

Unit-II: Chemical Bonding and Molecular Structure
Covalent bonding: VB Approach: Shapes of some inorganic molecules and ions on the basis of VSEPR and hybridization with suitable examples of linear, trigonal planar, square planar, tetrahedral, trigonal bipyramidal and octahedral arrangements. Concept of resonance and resonating structures in various inorganic and organic compounds.
MO Approach: Rules for the LCAO method, bonding and antibonding MOs and their characteristics for s-s, s-p and p-p combinations of atomic orbitals, nonbonding combination of orbitals, MO treatment of homonuclear diatomic molecules (N_2, O_2) and and heteronuclear diatomic molecules (CO, NO). Comparison of VB and MO approaches. (16 Lectures)

Section B: Organic Chemistry-1 (30 Periods)
Unit- III: Fundamentals of Organic Chemistry

Stereochemistry
Conformations with respect to ethane, butane and cyclohexane. Interconversion of Wedge Formula, Newmann, Sawhorse and Fischer representations. Concept of chirality (upto two carbon atoms). Configuration: Geometrical and Optical isomerism; Enantiomerism, Diastereomerism and Meso compounds). D and L; cis-trans nomenclature; CIP Rules: R/S (for one chiral carbon atoms) and E/Z Nomenclature (for up to two C=C systems). (10 Lectures)

Unit- IV: Aliphatic Hydrocarbons
Functional group approach for the following reactions (preparations & reactions) to be studied in context to their structure. Alkanes: (Upto 5 Carbons). Preparation: Catalytic hydrogenation, Wurtz reaction, Kolbes synthesis, from Grignard reagent. Reactions: Free radical Substitution: Halogena-
Alkenes: (Upto 5 Carbons) Preparation: Elimination reactions: Dehydration of alkenes and dehydro-
halogenation of alkyl halides (Saytzeffs rule); cis alkenes (Partial catalytic hydrogenation) and trans alkenes (Birch reduction). Reactions: cis-addition (alk. KMnO_4) and trans-addition (bromine), Addition of HX (Markownikoffs and anti-Markownikoffs addition), Hydration, Ozonolysis, Alkynes: (Upto 5 Carbons) Preparation: Acetylene from CaC_2 and conversion into higher alkynes; by de-
halogenation of tetra halides and dehydrohalogenation of vicinal-dihalides. Reactions: formation of metal acetylides, addition of bromine and alkaline KMnO_4, ozonolysis. (12 Lectures)

Reference Books:
• J. D. Lee: A new Concise Inorganic Chemistry, E L. B. S.
istry (Vol. I & II), E. L. B. S.
• Arun Bahl and B. S. Bahl: Advanced Organic Chemistry, S. Chand.

PRACTICAL: GE-I LAB.

Section A: Inorganic Chemistry-Volumetric Analysis
1. Estimation of sodium carbonate and sodium hydrogen carbonate present in a mixture.
2. Estimation of oxalic acid by titrating it with KMnO_4.
3. Estimation of water of crystallization in Mohrs salt by titrating with KMnO_4.
4. Estimation of Fe (II) ions by titrating it with $K_2Cr_2O_7$ using internal indicator.
5. Estimation of Cu (II) ions iodometrically using $Na_2S_2O_3$.

Section B: Organic Chemistry
1. Detection of extra elements (N, S, Cl, Br, I) in organic compounds (containing upto two extra elements).
2. Separation of mixtures by Chromatography: Measure the Rf value in each case (combination of two compounds to be given).
 (a) Identify and separate the components of a given mixture of 2 amino acids (glycine, aspartic acid, glutamic acid, tyrosine or any other amino acid) by paper chromatography.
 (b) Identify and separate the sugars present in the given mixture by paper chromatography.

large Reference Books:

SEMESTER-II

GE-II: CHEMICAL ENERGETICS, EQUILIBRIA & FUNCTIONAL ORGANIC CHEMISTRY-I
(Credits-6: Theory-4, Practical-2)-Max. Marks: 100
- THEORY (Each class 1 hr.): Marks-70
- PRACTICAL (Each class 2 hrs.): Marks-30
- Lectures: 60 (40 Theory + 20 Practical classes)

Section A: Physical Chemistry-1 (30 Lectures)
Unit-I: Chemical Energetics

Chemical Equilibrium:
Free energy change in a chemical reaction. Thermodynamic derivation of the law of chemical equilibrium. Distinction between G and Go, Le Chateliers principle. Relationships between Kp, Kc and Kx for reactions involving ideal gases. (8 Lectures)

Unit- II: Ionic Equilibria
Strong, moderate and weak electrolytes, degree of ionization, factors affecting degree of ionization, ionization constant and ionic product of water. Ionization of weak acids and bases, pH scale, common ion effect. Salt hydrolysis-calculation of hydrolysis constant, degree of hydrolysis and pH for different
salts. Buffer solutions. Solubility and solubility product of sparingly soluble salts applications of solubility product principle. (12 Lectures)

Section B: Organic Chemistry-2 (30 Lectures)

Unit- III:
Functional group approach for the following reactions (preparations & reactions) to be studied in context to their structure. Aromatic hydrocarbons: Preparation (Case benzene): from phenol, by decarboxylation, from acetylene, from benzene sulphonic acid. Reactions: (Case benzene): Electrophilic substitution: nitration, halogenation and sulphonation. Friedel-Crafts reaction (alkylation and acylation) (upto 4 carbons on benzene). Side chain oxidation of alkyl benzenes (up to 4 carbons on benzene). (8 Lectures)

Alkyl and Aryl Halides
Alkyl Halides (Up to 5 Carbons) Types of Nucleophilic Substitution (SN_1, SN_2 and SN_i) reactions. Preparation: from alkenes and alcohols.

Aryl Halides Preparation: (Chloro, bromo and iodo-benzene case): from phenol, Sandmeyer & Gattermann reactions. Reactions (Chlorobenzene): Aromatic nucleophilic substitution (replacement by OH group) and effect of nitro substituent. Benzyne Mechanism: KNH_2/NH_3 (or $NaNH_2/NH_3$). (8 Lectures)

Unit- IV: Alcohols, Phenols and Ethers (Upto 5 Carbons)

Alcohols: Preparation: Preparation of 1, 2 and 3 alcohols: using Grignard reagent, Ester hydrolysis, Reduction of aldehydes and ketones, carboxylic acid and esters.
Ethers (aliphatic and aromatic): Cleavage of ethers with HI.
Aldehydes and ketones (aliphatic and aromatic): Formaldehyde, acetaldehyde, acetone and benzaldehyde.
Preparation: from acid chlorides and from nitriles.

Reference Books:
• I.L. Finar: Organic Chemistry (Vol. I & II), E. L. B. S.
• Arun Bahl and B. S. Bahl: Advanced Organic Chemistry, S. Chand.
PRACTICAL: GE-II LAB.

Section A: Physical Chemistry

Thermochemistry
1. Determination of heat capacity of calorimeter for different volumes.
2. Determination of enthalpy of neutralization of hydrochloric acid with sodium hydroxide.
3. Determination of enthalpy of ionization of acetic acid.
4. Determination of integral enthalpy of solution of salts (KNO₃, NH₄Cl).
5. Determination of enthalpy of hydration of copper sulphate.
6. Study of the solubility of benzoic acid in water and determination of H. Ionic equilibria

pH measurements a) Measurement of pH of different solutions like aerated drinks, fruit juices, shampoos and soaps (use dilute solutions of soaps and shampoos to prevent damage to the glass electrode) using pH-meter.

b) Preparation of buffer solutions:
 (i) Sodium acetate-acetic acid.
 (ii) Ammonium chloride-ammonium hydroxide.

Measurement of the pH of buffer solutions and comparison of the values with theoretical values.

Section B: Organic Chemistry

1. Purification of organic compounds by crystallization (from water and alcohol) and distillation.
2. Criteria of Purity: Determination of melting and boiling points.
3. Preparations: Mechanism of various reactions involved to be discussed. Recrystallisation, determination of melting point and calculation of quantitative yields to be done.
 (a) Bromination of Phenol/Aniline.
 (b) Benzoylation of amines/phenols.
 (c) Oxime and 2,4 dinitrophenylhydrazone of aldehyde/ketone.

Reference Books:
- B.D. Khosla, Senior Practical Physical Chemistry, R. Chand & Co.
UNIT-I: General Principles of Metallurgy
Chief modes of occurrence of metals based on standard electrode potentials. Ellingham diagrams for reduction of metal oxides using carbon as reducing agent. Hydrometallurgy, Methods of purification of metals (Al, Pb, Fe, Cu, Ni, Zn): electrolytic, oxidative refining, Parting process, van Arkel-de Boer process and Monds process. (4 Lectures)

s- and p-Block Elements
Periodicity in s- and p-block elements with respect to electronic configuration, atomic and ionic size, ionization enthalpy, electronegativity (Pauling & Mulliken scales). Allotropy in C, S, and P. Oxidation states with reference to elements in unusual and rare oxidation states like carbides and nitrides), inert pair effect, diagonal relationship and anomalous behaviour of first member of each group. (11 Lectures)

UNIT-II: Compounds of s- and p-Block Elements
Hydrides and their classification (ionic, covalent and interstitial), structure and properties with respect to stability of hydrides of p- block elements. Concept of multicentre bonding (diborane). Structure, bonding and their important properties like oxidation/reduction, acidic/basic nature of the following compounds and their applications in industrial, organic and environmental chemistry. Hydrides of nitrogen (NH_3, N_2H_4, N_3H, NH_2OH) Oxoacids of P, S and Cl. Halides and oxohalides: PCl_3, PCl_5, $SOCl_2$. (15 Lectures)

Section B: Physical Chemistry-3 (30 Lectures)

UNIT-III: Kinetic Theory of Gases
Postulates of Kinetic Theory of Gases and derivation of the kinetic gas equation. Deviation of real gases from ideal behaviour, compressibility factor, causes of deviation. van der Waals equation of state for real gases. Boyle temperature (derivation not required). Critical phenomena, critical constants and their calculation from van der Waals equation. Maxwell Boltzmann distribution laws of molecular velocities and molecular energies (graphic representation derivation not required) and their importance. Temperature dependence of these distributions. Most probable, average and root mean square velocities (no derivation). Collision cross section, collision number, collision frequency, collision diameter and mean free path of molecules. Viscosity of gases and effect of temperature and pressure on coefficient of viscosity (qualitative treatment only). (10 Lectures)

Liquids
Surface tension and its determination using stalagmometer. Viscosity of a liquid and determination of coefficient of viscosity using Ostwald viscometer. Effect of temperature on surface tension and coefficient of viscosity of a liquid (qualitative treatment only). (5 Lectures)

UNIT-IV: Solids
Forms of solids. Symmetry elements, unit cells, crystal systems, Bravais lattice types and identification of lattice planes. Laws of Crystallography - Law of constancy of interfacial angles, Law of
rational indices. Miller indices. XRay diffraction by crystals, Braggs law. Structures of NaCl, and CsCl (qualitative treatment only). Defects in crystals. (7 Lectures)

Chemical Kinetics

Reference Books:
- D. Lee: A New Concise Inorganic Chemistry, E.L.B.S.

PRACTICAL: GE-III LAB.

Section A: Inorganic Chemistry

Semi-micro qualitative analysis using H_2S of mixtures- not more than four ionic species (two anions and two cations and excluding insoluble salts) out of the following:

Cations: $NH^+, Pb^{2+}, Ag^+, Br^-, Cu^{2+}, Cd^{2+}, Sn^{2+}, Fe^{3+}, Al^{3+}$

Anions: $CO_3^{2-}, S^{2-}, SO_4^{2-}, NO_3, Cl, Br, I, NO_3, SO_4^{2-}, PO_4^{3-}, F^-$ (Spot tests should be carried out wherever feasible)

Section B: Physical Chemistry

Chemical Kinetics

Study the kinetics of the following reactions.

3. Initial rate method: Iodide-persulphate reaction.
4. Integrated rate method:
 a) Acid hydrolysis of methyl acetate with hydrochloric acid.
 b) Saponification of ethyl acetate.
 c) Compare the strengths of HCl and H_2SO_4 by studying kinetics of hydrolysis of methyl acetate.

Reference Books:
- A.I. Vogel, Qualitative Inorganic Analysis, Prentice Hall, 7th Edn
- B.D. Khosla, Senior Practical Physical Chemistry, R. Chand & Co.
Section A: Inorganic Chemistry-4 (30 Lectures)
UNIT-I: Chemistry of 3d metals
Oxidation states displayed by Cr, Fe, Co, Ni and Co. A study of the following compounds (including preparation and important properties); Peroxo compounds of Cr, $K_2Cr_2O_7$, $KMnO_4$, $K_4[Fe(CN)_6]$, sodium nitroprusside, $[Co(NH_3)_6]Cl_3$, $Na_3[Co(NO_2)_6]$. (6 Lectures)

Organometallic Compounds Definition and Classification with appropriate examples based on nature of metal-carbon bond (ionic, s, p and multicentre bonds). Structures of methyl lithium, Zeiss salt and ferrocene. EAN rule as applied to carbonyls. Preparation, structure, bonding and properties of mononuclear and polynuclear carbonyls of 3d metals. π-acceptor behaviour of carbon monoxide. Synergic effects (VB approach). (12 Lectures)

UNIT-II: Bio-Inorganic Chemistry
A brief introduction to bio-inorganic chemistry. Role of metal ions present in biological systems with special reference to Na^+, K^+ and Mg^{2+} ions: Na/K pump; Role of Mg^{2+} ions in energy production and chlorophyll. Role of Ca^{2+} in blood clotting, stabilization of protein structures and structural role (bones). (12 Lectures)

Section B: Organic Chemistry-4 (30 Lectures)
UNIT-III: Polynuclear and heteronuclear aromatic compounds
Properties of the following compounds with reference to electrophilic and nucleophilic substitution: Naphthalene, Anthracene, Furan, Pyrrole, Thiophene, and Pyridine. (6 Lectures)

Active methylene compounds

UNIT-IV: Application of Spectroscopy to Simple Organic Molecules
Applications of visible, ultraviolet and Infrared spectroscopy in organic molecules. Electromagnetic radiations, electronic transitions, λ_{max} and ϵ_{max}, chromophore, auxochrome, bathochromic and hypsochromic shifts. Application of electronic spectroscopy and Woodward rules for calculating λ_{max} of conjugated dienes and α, β-unsaturated compounds. Infrared radiation and types of molecular vibrations, functional group and fingerprint region. IR spectra of alkanes, alkenes and simple alcohols (inter and intramolecular hydrogen bonding), aldehydes, ketones, carboxylic acids and their derivatives (effect of substitution on $> C = O$ stretching absorptions). (18 Lectures)

Reference Books:
- James E. Huheey, Ellen Keiter & Richard Keiter: Inorganic Chemistry: Principles of Structure and
Reactivity, Pearson Publication.

- J.D. Lee: A New Concise Inorganic Chemistry, E.L.B.S.

PRACTICAL: GE-IV LAB.

Section A: Inorganic Chemistry
1. Separation of mixtures by chromatography: Measure the Rf value in each case. (Combination of two ions to be given).

Paper chromatographic separation of Fe^{3+}, Al^{3+} and Cr^{3+} or Paper chromatographic separation of Ni^{2+}, Co^{2+}, Mn^{2+} and Zn^{2+}

Section B: Organic Chemistry
Systematic Qualitative Organic Analysis of Organic Compounds possessing mono-functional groups (-COOH, phenolic, aldehydic, ketonic, amide, nitro, amines) and preparation of one derivative.

Reference Books:

SEMESTER- IV(CBZ Students)

GE:IV- MOLECULES OF LIFE
(Credits-6: Theory-4, Practical-2)-Max. Marks: 100

THEORY (Each class 1 hr.): Marks-70
PRACTICAL (Each class 2 hrs.): Marks-30
Lectures: 60 (40 Theory + 20 Practical classes)

UNIT-I: Carbohydrates
Classification of carbohydrates, reducing and non reducing sugars, General Properties of Glucose and Fructose, their open chain structure. Epimers, mutarotation and anomers. Determination of configuration of Glucose (Fischer proof). Cyclic structure of glucose. Haworth projections. Cyclic structure of fructose. Linkage between monosachharides, structure of disachharrides (sucrose, maltose, lactose) and polysachharrides (starch and cellulose) excluding their structure elucidation. (12 Periods)
UNIT-II Amino Acids, Peptides and Proteins
Classification of Amino Acids, Zwitterion structure and Isoelectric point. Overview of Primary, Secondary, Tertiary and Quaternary structure of proteins. Determination of primary structure of peptides, determination of N-terminal amino acid (by DNFB and Edman method) and C-terminal amino acid (by thiodyantoin and with carboxypeptidase enzyme). Synthesis of simple peptides (upto dipeptides) by N-protection (t-butyloxycarbonyl and phthaloyl) & C-activating groups and Merrifield solid phase synthesis. (12 Periods)

UNIT-III: Enzymes and correlation with drug action
Mechanism of enzyme action, factors affecting enzyme action, Coenzymes and cofactors and their role in biological reactions, Specificity of enzyme action (Including stereospecificity), Enzyme inhibitors and their importance, phenomenon of inhibition (Competitive and Non competitive inhibition including allosteric inhibition). Drug action-receptor theory. Structure activity relationships of drug molecules, binding role of OH group, $-NH_2$ group, double bond and aromatic ring. (10 Periods)

Nucleic Acids
Components of Nucleic acids: Adenine, guanine, thymine and Cytosine (structure only), other components of nucleic acids, Nucleosides and nucleotides (nomenclature), Structure of polynucleotides; Structure of DNA (Watson-Crick model) and RNA (types of RNA), Genetic Code, Biological roles of DNA and RNA: Replication, Transcription and Translation. (8 Periods)

UNIT-IV: Lipids
Introduction to lipids, classification. Oils and fats: Common fatty acids present in oils and fats, Omega fatty acids, Trans fats, Hydrogenation, Saponification value, Iodine number. Biological importance of triglycerides, phospholipids, glycolipids, and steroids (cholesterol). (8 Periods)

Concept of Energy in Biosystems

Recommended Texts:
- Finar, I. L. Organic Chemistry (Volume 1), Dorling Kindersley (India) Pvt. Ltd. (Pearson Education).

PRACTICAL: GE-IV(CBZ) LAB.

1. Separation of amino acids by paper chromatography.
2. To determine the concentration of glycine solution by formylation method.
3. Study of titration curve of glycine.
4. Action of salivary amylase on starch.
5. Effect of temperature on the action of salivary amylase on starch.
6. To determine the saponification value of an oil/fat.
7. To determine the iodine value of an oil/fat.
8. Differentiate between a reducing/ nonreducing sugar.
9. Extraction of DNA from onion/cauliflower.
10. To synthesise aspirin by acetylation of salicylic acid and compare it with the ingredient of an aspirin tablet by TLC.

Recommended Texts:
CHEMISTRY(PASS)

SEMESTER-I

DSE 2A: CHEMICAL ENERGETICS, EQUILIBRIA & FUNCTIONAL ORGANIC CHEMISTRY

(Credits: 6 Theory-04, Practicals-02)
THEORY (Each class 1 hour): 70 Marks
PRACTICAL (Each class 2 hours): 30 Marks
Lectures: 60 (40 Theory + 20 Practical classes)

SECTION A: INORGANIC CHEMISTRY-1 (30 Periods)

Unit-I: bf Atomic Structure
What is Quantum mechanics? Time independent Schrodinger equation and meaning of various terms in it. Significance of ψ and ψ^2, Schrdinger equation for hydrogen atom. Radial and angular parts of the hydogenic wave functions (atomic orbitals) and their variations for 1s, 2s, 2p, 3s, 3p and 3d orbitals (Only graphical representation). Significance of quantum numbers, orbital angular momentum and quantum numbers ml and ms. Shapes of s, p and d atomic orbitals, nodal planes.
Discovery of spin, spin quantum number (s) and magnetic spin quantum number (ms). Rules for filling electrons in various orbitals, Electronic configurations of the atoms. Stability of half-filled and completely filled orbitals, concept of exchange energy. Relative energies of atomic orbitals, Anomalous electronic configurations. (14 Lectures)

Unit-II: Chemical Bonding and Molecular Structure
Covalent bonding: VB Approach: Shapes of some inorganic molecules and ions on the basis of VSEPR and hybridization with suitable examples of linear, trigonal planar, square planar, tetrahedral, trigonal bipyramidal and octahedral arrangements. Concept of resonance and resonating structures in various inorganic and organic compounds.
MO Approach: Rules for the LCAO method, bonding and antibonding MOs and their characteristics for s-s, s-p and p-p combinations of atomic orbitals, nonbonding combination of orbitals, MO treatment of homonuclear diatomic molecules (N_2, O_2) and and heteronuclear diatomic molecules (CO, NO). Comparison of VB and MO approaches. (16 Lectures)

Section B: Organic Chemistry-1 (30 Periods)

Unit-III: Fundamentals of Organic Chemistry
Physical Effects, Electronic Displacements: Inductive Effect, Electromeric Effect, Resonance and
Hyperconjugation. Cleavage of Bonds: Homolysis and Heterolysis.

Stereochemistry
Conformations with respect to ethane, butane and cyclohexane. Interconversion of Wedge Formula, Newmann, Sawhorse and Fischer representations. Concept of chirality (upto two carbon atoms). Configuration: Geometrical and Optical isomerism; Enantiomerism, Diastereomerism and Meso compounds). D and L; cis-trans nomenclature; CIP Rules: R/S (for one chiral carbon atoms) and E/Z Nomenclature (for up to two C=C systems). (10 Lectures)

Unit- IV: Aliphatic Hydrocarbons
Functional group approach for the following reactions (preparations & reactions) to be studied in context to their structure. Alkanes: (Upto 5 Carbons). Preparation: Catalytic hydrogenation, Wurtz reaction, Kolbes synthesis, from Grignard reagent. Reactions: Free radical Substitution: Halogenation.
Alkenes: (Upto 5 Carbons) Preparation: Elimination reactions: Dehydration of alkenes and dehydrohalogenation of alkyl halides (Saytzeffs rule); cis alkenes (Partial catalytic hydrogenation) and trans alkenes (Birch reduction). Reactions: cis-addition (alk. $KMnO_4$) and trans-addition (bromine), Addition of HX (Markownikoffs and anti-Markownikoffs addition), Hydration, Ozonolysis, Alkynes: (Upto 5 Carbons) Preparation: Acetylene from CaC_2 and conversion into higher alkynes; by dehalogenation of tetra halides and dehydrohalogenation of vicinal-dihalides. Reactions: formation of metal acetylides, addition of bromine and alkaline $KMnO_4$, ozonolysis. (12 Lectures)

Reference Books:
• J. D. Lee: A new Concise Inorganic Chemistry, E L. B. S.
• Arun Bahl and B. S. Bahl: Advanced Organic Chemistry, S. Chand.

PRACTICAL: DSC 2A LAB.
Section A: Inorganic Chemistry-Volumetric Analysis
1. Estimation of sodium carbonate and sodium hydrogen carbonate present in a mixture.
2. Estimation of oxalic acid by titrating it with $KMnO_4$.
3. Estimation of water of crystallization in Mohrs salt by titrating with $KMnO_4$.
4. Estimation of Fe (II) ions by titrating it with $K_2Cr_2O_7$ using internal indicator.
5. Estimation of Cu (II) ions iodometrically using $Na_2S_2O_3$.

Section B: Organic Chemistry

1. Detection of extra elements (N, S, Cl, Br, I) in organic compounds (containing upto two extra elements).

2. Separation of mixtures by Chromatography: Measure the Rf value in each case (combination of two compounds to be given).
 (a) Identify and separate the components of a given mixture of 2 amino acids (glycine, aspartic acid, glutamic acid, tyrosine or any other amino acid) by paper chromatography.
 (b) Identify and separate the sugars present in the given mixture by paper chromatography.

large Reference Books:

SEMESTER-II

DSE-2B: CHEMICAL ENERGETICS, EQUILIBRIA & FUNCTIONAL ORGANIC CHEMISTRY
(Credits: 6 Theory-04, Practicals-02)

THEORY (Each class 1 hour): 70 Marks
PRACTICAL (Each class 2 hours): 30 Marks
Lectures: 60 (40 Theory + 20 Practical classes)

Section A: Physical Chemistry-1 (30 Lectures)

Unit-I: Chemical Energetics

Chemical Equilibrium:
Free energy change in a chemical reaction. Thermodynamic derivation of the law of chemical equilibrium. Distinction between G and G_0, Le Chateliers principle. Relationships between K_p, K_c and K_x for reactions involving ideal gases. (8 Lectures)

Unit-II: Ionic Equilibria
Strong, moderate and weak electrolytes, degree of ionization, factors affecting degree of ionization, ionization constant and ionic product of water. Ionization of weak acids and bases, pH scale, common ion effect. Salt hydrolysis-calculation of hydrolysis constant, degree of hydrolysis and pH for different salts. Buffer solutions. Solubility and solubility product of sparingly soluble salts applications of solubility product principle. (12 Lectures)
Section B: Organic Chemistry-2 (30 Lectures)

Unit- III:
Functional group approach for the following reactions (preparations & reactions) to be studied in context to their structure. Aromatic hydrocarbons: Preparation (Case benzene): from phenol, by decarboxylation, from acetylene, from benzene sulphonic acid. Reactions: (Case benzene): Electrophilic substitution: nitrination, halogenation and sulphonation. Friedel-Crafts reaction (alkylation and acylation) (upto 4 carbons on benzene). Side chain oxidation of alkyl benzenes (up to 4 carbons on benzene). (8 Lectures)

Alkyl and Aryl Halides

Alkyl Halides (Up to 5 Carbons) Types of Nucleophilic Substitution (SN_1, SN_2 and SN_i) reactions. Preparation: from alkenes and alcohols.

Aryl Halides Preparation: (Chloro, bromo and iodo-benzene case): from phenol, Sandmeyer & Gattermann reactions. Reactions (Chlorobenzene): Aromatic nucleophilic substitution (replacement by OH group) and effect of nitro substituent. Benzyne Mechanism: KNH_2/NH_3 (or $NaNH_2/NH_3$). (8 Lectures)

Unit- IV: Alcohols, Phenols and Ethers (Upto 5 Carbons)

Alcohols: Preparation: Preparation of 1, 2 and 3 alcohols: using Grignard reagent, Ester hydrolysis. Reduction of aldehydes and ketones, carboxylic acid and esters.

Aldehydes and ketones (aliphatic and aromatic): Formaldehyde, acetaldehyde, acetone and benzaldehyde
Preparation: from acid chlorides and from nitriles.

Reference Books:

PRACTICAL: DSE-2B LAB.

Section A: Physical Chemistry
Thermochemistry
1. Determination of heat capacity of calorimeter for different volumes.
2. Determination of enthalpy of neutralization of hydrochloric acid with sodium hydroxide.
3. Determination of enthalpy of ionization of acetic acid.
4. Determination of integral enthalpy of solution of salts (KNO₃, NH₄Cl).
5. Determination of enthalpy of hydration of copper sulphate.
6. Study of the solubility of benzoic acid in water and determination of H. Ionic equilibria
 pH measurements
 a) Measurement of pH of different solutions like aerated drinks, fruit juices, shampoos and soaps (use dilute solutions of soaps and shampoos to prevent damage to the glass electrode) using pH-meter.
 b) Preparation of buffer solutions:
 (i) Sodium acetate-acetic acid.
 (ii) Ammonium chloride-ammonium hydroxide.
 Measurement of the pH of buffer solutions and comparison of the values with theoretical values.

Section B: Organic Chemistry
1. Purification of organic compounds by crystallization (from water and alcohol) and distillation.
2. Criteria of Purity: Determination of melting and boiling points.
3. Preparations: Mechanism of various reactions involved to be discussed. Recrystallisation, determination of melting point and calculation of quantitative yields to be done.
 (a) Bromination of Phenol/Aniline.
 (b) Benzoylation of amines/phenols.
 (c) Oxime and 2,4 dinitrophenylhydrazone of aldehyde/ketone.

Reference Books:
- B.D. Khosla, Senior Practical Physical Chemistry, R. Chand & Co.
Section A: Physical Chemistry-2 (30 Lectures)

UNIT-I: Solutions

Phase Equilibrium
Phases, components and degrees of freedom of a system, criteria of phase equilibrium. Gibbs Phase Rule and its thermodynamic derivation. Derivation of Clausius Clapeyron equation and its importance in phase equilibria. Phase diagrams of one-component systems (water and sulphur) and two component systems involving eutectics, congruent and incongruent melting points (lead-silver, FeCl$_3$ - H$_2$O and Na-K only). (7 Lectures)

UNIT-II: Conductance
Conductivity, equivalent and molar conductivity and their variation with dilution for weak and strong electrolytes. Kohlrausch law of independent migration of ions. Transference number and its experimental determination using Hittorf and Moving boundary methods. Ionic mobility. Applications of conductance measurements: determination of degree of ionization of weak electrolyte, solubility and solubility products of sparingly soluble salts, ionic product of water, hydrolysis constant of a salt. Conductometric titrations (only acid-base). (7 Lectures)

Electrochemistry

Section B: Organic Chemistry-3 (30 Lectures)

UNIT-III: Functional group approach for the following reactions (preparations & reactions) to be studied in context to their structure.

Carboxylic acids and their derivatives.
Carboxylic acids (aliphatic and aromatic)
Preparation: Acidic and Alkaline hydrolysis of esters.
Reactions: Hell Vohlard - Zelinsky Reaction.
Carboxylic acid derivatives (aliphatic): (Upto 5 carbons)
Preparation: Acid chlorides, Anhydrides, Esters and Amides from acids and their interconversion.
Reactions: Comparative study of nucleophilicity of acyl derivatives. Reformatsky Reaction, Perkin condensation. (6 Lectures)
Amines and Diazonium Salts

UNIT-IV: Amino Acids, Peptides and Proteins:
Carbohydrates: Classification, and General Properties, Glucose and Fructose (open chain and cyclic structure), Determination of configuration of monosaccharides, absolute configuration of Glucose and Fructose, Mutarotation, ascending and descending in monosaccharides. Structure of disaccharides (sucrose, cellobiose, maltose, lactose) and polysaccharides (starch and cellulose) excluding their structure elucidation.

Reference Books:
- Finar, I. L. Organic Chemistry (Volume 1), Dorling Kindersley (India) Pvt. Ltd. (Pearson Education).

PRACTICAL: DSE-2C LAB.

Section A: Physical Chemistry
Distribution
Study of the equilibrium of one of the following reactions by the distribution method: \(I_2(aq) + I^-(aq) \rightarrow I_3-(aq), \) \(Cu_2 + (aq) + xNH_2(aq) \rightarrow [Cu(NH_3)_x]^{2+}. \)
Conductance
I. Determination of cell constant.
II. Determination of equivalent conductance, degree of dissociation and dissociation constant of a weak acid.
III. Perform the following conductometric titrations:
 i. Strong acid vs. strong base.
 ii. Weak acid vs. strong base.

Potentiometry
Perform the following potentiometric titrations:
 i. Strong acid vs. strong base.
 ii. Weak acid vs. strong base.
 iii. Potassium dichromate vs. Mohr’s salt.

Section B: Organic Chemistry
I. Systematic Qualitative Organic Analysis of Organic Compounds possessing monofunctional groups (-COOH, phenolic, aldehydic, ketonic, amide, nitro, amines) and preparation of one derivative.
II. Separation of amino acids by paper chromatography.
 2. Determination of the concentration of glycine solution by formylation method.
 3. Titration curve of glycine.
 4. Action of salivary amylase on starch.
 5. Effect of temperature on the action of salivary amylase on starch.
 6. Differentiation between a reducing/nonreducing sugar.

Reference Books:
• B.D. Khosla: Senior Practical Physical Chemistry, R. Chand & Co.

SEMESTER-IV

DSC-2D: CHEMISTRY OF S- AND P-BLOCK ELEMENTS, STATES OF MATTER & CHEMICAL KINETICS
 THEORY (Each class 1 hour):70 Marks
 PRACTICAL (Each class 2 hours):30 Marks
 Lectures: 60(40 Theory + 20 Practical classes)

UNIT-I: General Principles of Metallurgy
Chief modes of occurrence of metals based on standard electrode potentials. Ellingham diagrams for reduction of metal oxides using carbon as reducing agent. Hydrometallurgy, Methods of purification of metals (Al, Pb, Fe, Cu, Ni, Zn): electrolytic, oxidative refining, Parting process, van Arkel-de Boer process and Monds process. (4 Lectures)

s- and p-Block Elements
Periodicity in s- and p-block elements with respect to electronic configuration, atomic and ionic size, ionization enthalpy, electronegativity (Pauling & Mulliken scales). Allotropy in C, S, and P. Oxidation states with reference to elements in unusual and rare oxidation states like carbides and nitrides), inert pair effect, diagonal relationship and anomalous behaviour of first member of each group. (11 Lectures)

UNIT-II: Compounds of s- and p-Block Elements
Hydrides and their classification (ionic, covalent and interstitial), structure and properties with respect to stability of hydrides of p- block elements. Concept of multicentre bonding (diborane). Structure, bonding and their important properties like oxidation/reduction, acidic/basic nature of the following compounds and their applications in industrial, organic and environmental chemistry. Hydrides of nitrogen (NH₃, N₂H₄, N₃H, NH₂OH) Oxoacids of P, S and Cl. Halides and oxohalides: PCl₃, PCl₅, SOCl₂. (15 Lectures)

Section B: Physical Chemistry-3 (30 Lectures)

UNIT-III: Kinetic Theory of Gases
Postulates of Kinetic Theory of Gases and derivation of the kinetic gas equation. Deviation of real gases from ideal behaviour, compressibility factor, causes of deviation. van der Waals equation of state for real gases. Boyle temperature (derivation not required). Critical phenomena, critical constants and their calculation from van der Waals equation. Maxwell Boltzmann distribution laws of molecular velocities and molecular energies (graphic representation derivation not required) and their importance. Temperature dependence of these distributions. Most probable, average and root mean square velocities (no derivation). Collision cross section, collision number, collision frequency, collision diameter and mean free path of molecules. Viscosity of gases and effect of temperature and pressure on coefficient of viscosity (qualitative treatment only). (10 Lectures)

Liquids
Surface tension and its determination using stalagmometer. Viscosity of a liquid and determination of coefficient of viscosity using Ostwald viscometer. Effect of temperature on surface tension and coefficient of viscosity of a liquid (qualitative treatment only). (5 Lectures)

UNIT-IV: Solids

Chemical Kinetics
and Activated Complex theory of bimolecular reactions. Comparison of the two theories (qualitative treatment only). (8 Lectures)

Reference Books:
• D. Lee: A New Concise Inorganic Chemistry, E.L.B.S.

PRACTICAL: DSE-2D LAB.

Section A: Inorganic Chemistry
Semi-micro qualitative analysis using H_2S of mixtures- not more than four ionic species (two anions and two cations and excluding insoluble salts) out of the following:
Cations: NH^+, Pb^{2+}, Ag^+, Bi^{3+}, Cu^{2+}, Cd^{2+}, Sn^{2+}, Fe^{3+}, Al^{3+}, Co, Cr^{3+}, Ni^{2+}, Mn^{2+}, Zn^{2+}, Ba^{2+}, Sr^{2+}, Ca^{2+}, K^+
Anions: CO_3^{2-}, S*2, SO_4^{2-}, NO_3, Cl, Br, I, NO_3, SO_4^{2-}, PO_4^{3-}, F^- (Spot tests should be carried out wherever feasible)

Section B: Physical Chemistry
Chemical Kinetics
Study the kinetics of the following reactions.
3. Initial rate method: Iodide-persulphate reaction.
4. Integrated rate method:
a) Acid hydrolysis of methyl acetate with hydrochloric acid.
b) Saponification of ethyl acetate.
c) Compare the strengths of HCl and H_2SO_4 by studying kinetics of hydrolysis of methyl acetate.

Reference Books:
• A.I. Vogel, Qualitative Inorganic Analysis, Prentice Hall, 7th Edn
• A.I. Vogel, Quantitative Chemical Analysis, Prentice Hall, 6th Edn.
• B.D. Khosla, Senior Practical Physical Chemistry, R. Chand & Co.

SEMESTER-V

DSE-1(2A): POLYMER CHEMISTRY
(Credits-6, Theory-4, Practicals-2)
THEORY (Each class 1 hour):70 Marks
PRACTICAL (Each class 2 hours):30 Marks
Lectures: 60(40 Theory + 20 Practical classes)
UNIT-I: Introduction and history of polymeric materials:
Different schemes of classification of polymers, Polymer nomenclature, Molecular forces and chemical bonding in polymers, Texture of Polymers. (4 Lectures)
Functionality and its importance:
Criteria for synthetic polymer formation, classification of polymerization processes, Relationships between functionality, extent of reaction and degree of polymerization. Bi-functional systems, Poly-functional systems. (8 Lectures)

UNIT-II: Kinetics of Polymerization:
Mechanism and kinetics of step growth, radical chain growth, ionic chain (both cationic and anionic) and coordination polymerizations, Mechanism and kinetics of copolymerization, polymerization techniques. (8 lectures)
Crystallization and crystallinity:
Determination of crystalline melting point and degree of crystallinity, Morphology of crystalline polymers, Factors affecting crystalline melting point. (4 Lectures)
Nature and structure of polymers: Structure property relationships. (2 Lectures)

UNIT-III: Determination of molecular weight of polymers
(Mn, Mw, etc.) by end group analysis, viscometry, light scattering and osmotic pressure methods. Molecular weight distribution and its significance. Polydispersity index. (8 Lectures)
Glass transition temperature (Tg) and determination of Tg
WLF equation, Factors affecting glass transition temperature (Tg). (8 Lectures)

UNIT-IV: Polymer Solution
Criteria for polymer solubility, Solubility parameter, Thermodynamics of polymer solutions, entropy, enthalpy, and free energy change of mixing of polymers solutions. (8 Lectures)
Properties of Polymers
(Physical, thermal & mechanical properties). Brief introduction to preparation, structure, properties and application of the following polymers: polyolefins, polystyrene and styrene copolymers, poly(vinyl chloride) poly(vinyl acetate), polyacrylamide, fluoro polymers (Teflon), polyamides (nylon-6 and nylon 6,6). Phenol formaldehyde resins (Bakelite, Novalac), polyurethanes, silicone polymers (polysiloxane), Polycarbonates, Conducting Polymers, (polyacetylene, polyaniline). (10 Lectures)

Reference Books:
• Seymours Polymer Chemistry, Marcel Dekker, Inc.
• G. Odian: Principles of Polymerization, John Wiley.
• F.W. Billmeyer: Text Book of Polymer Science, John Wiley.
• P. Ghosh: Polymer Science & Technology, Tata Mcgraw-Hill.
• R.W. Lenz: Organic Chemistry of Synthetic High Polymers.

PRACTICAL: DSE-1(2A) LAB.

Polymer synthesis
1. Free radical solution polymerization of styrene (St) / Methyl Methacrylate (MMA) / Methyl Acrylate (MA) / Acrylic acid (AA).
 (a) Purification of monomer.
 (b) Polymerization using benzoyl peroxide (BPO) / 2,2-azo-bis-isobutylonitrile (AIBN).
3. Interfacial polymerization, preparation of polyester from isophthaloyl chloride (IPC) and phenolphthalein.
 (a) Preparation of IPC.
 (b) Purification of IPC.
 (c) Interfacial polymerization.
4. Redox polymerization of acrylamide.
5. Precipitation polymerization of acrylonitrile.
6. Preparation of urea-formaldehyde resin.
7. Preparations of novalac resin/resold resin.
8. Microscale Emulsion Polymerization of poly(methylacrylate).

Polymer characterization
1. Determination of molecular weight by viscometry:
 (a) Polyacrylamide-aq. NaNO2 solution
 (b) (Poly vinyl propyldiene (PVP) in water
2. Determination of the viscosity-average molecular weight of poly(vinyl alcohol) (PVOH) and the fraction of head-to-head monomer linkages in the polymer.
3. Determination of molecular wt. by end group analysis: Polyethylene glycol (PEG) (OH group).
4. Determination of hydroxyl number of a polymer using colorimetric method.

Polymer analysis
1. Estimation of the amount of HCHO in the given solution by sodium sulphite method
2. Instrumental Techniques
3. IR studies of polymers

*at least 5 experiments to be carried out.

Reference Books:
- Malcolm P. Stevens, Polymer Chemistry: An Introduction, 3rd Ed.

DSE-2B: INDUSTRIAL CHEMICALS AND ENVIRONMENT
(Credits-6, Theory-4, Practicals-2)

THEORY (Each class 1 hour): 70 Marks

PRACTICAL (Each class 2 hours): 30 Marks

Lectures: 60(40 Theory + 20 Practical classes)

UNIT-I: Industrial Gases and Inorganic Chemicals
Industrial Gases: Large scale production, uses, storage and hazards in handling of the following gases: oxygen, nitrogen, argon, neon, helium, hydrogen, acetylene, carbon monoxide, chlorine, sulphur dioxide. Inorganic Chemicals: Manufacture, application and hazards in handling the following chemicals: hydrochloric acid, nitric acid, sulphuric acid, caustic soda, common salt, bleaching powder, sodium thiosulphate, hydrogen peroxide, potash alum, potassium dichromate and potassium permanganate. (10 Lectures)

bf Industrial Metallurgy
Preparation of metals (ferrous and nonferrous) and ultrapure metals for semiconductor technology. (4 Lectures)

UNIT-II: Environment and its segments

UNIT-IV: Energy & Environment
Sources of energy: Coal, petrol and natural gas. Nuclear fusion/fission, solar energy, hydrogen, geothermal, tidal and hydel. Nuclear Pollution: Disposal of nuclear waste, nuclear disaster and its management. (10 Lectures)

Biocatalysis: Introduction to biocatalysis: Importance in green chemistry and chemical industry. (6 Lectures)

Reference Books:
PRACTICAL: DSE-2B LAB.

1. Determination of dissolved oxygen in water.
2. Determination of Chemical Oxygen Demand (COD).
3. Determination of Biological Oxygen Demand (BOD).
4. Percentage of available chlorine in bleaching powder.
5. Measurement of chloride, sulphate and salinity of water samples by simple titration method ($AgNO_3$ and potassium chromate).
6. Estimation of total alkalinity of water samples (CO$_3^{2-}$, HCO$_3^-$) using double titration method.
8. Study of some of the common bio-indicators of pollution.
10. Preparation of borax/ boric acid.

Reference Books:

DSE-2B: MOLECULES OF LIFE (For CBZ Students)

THEORY (Each class 1 hour): 70 Marks
PRACTICAL (Each class 2 hours): 30 Marks
Lectures: 60 (40 Theory + 20 Practical classes)

UNIT-I: Carbohydrates
Classification of carbohydrates, reducing and non reducing sugars, General Properties of Glucose and Fructose, their open chain structure. Epimers, mutarotation and anomers. Determination of configuration of Glucose (Fischer proof). Cyclic structure of glucose. Haworth projections. Cyclic structure of fructose. Linkage between monosachharides, structure of disacharrides (sucrose, maltose, lactose) and polysacharrides (starch and cellulose) excluding their structure elucidation. (12 Periods)

UNIT-II Amino Acids, Peptides and Proteins
Classification of Amino Acids, Zwitterion structure and Isoelectric point. Overview of Primary, Secondary, Tertiary and Quaternary structure of proteins. Determination of primary structure of peptides, determination of N-terminal amino acid (by DNFB and Edman method) and C-terminal amino acid (by thiohydantoin and with carboxypeptidase enzyme). Synthesis of simple peptides (upto dipeptides) by N-protection (t-butyloxycarbonyl and phthaloyl) & C-activating groups and Merrifield solid phase synthesis. (12 Periods)
UNIT-III: Enzymes and correlation with drug action
Mechanism of enzyme action, factors affecting enzyme action, Coenzymes and cofactors and their role in biological reactions, Specificity of enzyme action (Including stereospecificity), Enzyme inhibitors and their importance, phenomenon of inhibition (Competitive and Non-competitive inhibition including allosteric inhibition). Drug action-receptor theory. Structure activity relationships of drug molecules, binding role of OH group, $-NH_2$ group, double bond and aromatic ring. (10 Periods)

Nucleic Acids
Components of Nucleic acids: Adenine, guanine, thymine and Cytosine (Structure only), other components of nucleic acids, Nucleosides and nucleotides (nomenclature), Structure of polynucleotides; Structure of DNA (Watson-Crick model) and RNA (types of RNA), Genetic Code, Biological roles of DNA and RNA: Replication, Transcription and Translation. (8 Periods)

UNIT-IV: Lipids
Introduction to lipids, classification. Oils and fats: Common fatty acids present in oils and fats, Omega fatty acids, Trans fats, Hydrogenation, Saponification value, Iodine number. Biological importance of triglycerides, phospholipids, glycolipids, and steroids (cholesterol). (8 Periods)

Concept of Energy in Biosystems

Recommended Texts:
- Finar, I. L. Organic Chemistry (Volume 1), Dorling Kindersley (India) Pvt. Ltd. (Pearson Education).

PRACTICAL: DSE-2B(CBZ) LAB.
1. Separation of amino acids by paper chromatography.
2. To determine the concentration of glycine solution by formylation method.
3. Study of titration curve of glycine.
4. Action of salivary amylase on starch.
5. Effect of temperature on the action of salivary amylase on starch.
6. To determine the saponification value of an oil/fat.
7. To determine the iodine value of an oil/fat.
8. Differentiate between a reducing/ nonreducing sugar.
9. Extraction of DNA from onion/cauliflower.
10. To synthesise aspirin by acetylation of salicylic acid and compare it with the ingredient of an aspirin tablet by TLC.

Recommended Texts:
SKILL ELECTIVE COURSES (SEC)

SEMESTER-III
SEC:1-CHEMICAL TECHNOLOGY & SOCIETY
(Credits: 02, F.M.: 50, End Sem: 40, Mid Sem: 10)
Theory: 30 Lectures

Chemical Technology
Basic principles of distillation, solvent extraction, solid-liquid leaching and liquid-liquid extraction, separation by absorption and adsorption. An introduction into the scope of different types of equipment needed in chemical technology, including reactors, distillation columns, extruders, pumps, mills, emulgators. Scaling up operations in chemical industry. Introduction to clean technology. (15 Lectures)

Society
Exploration of societal and technological issues from a chemical perspective. Chemical and scientific literacy as a means to better understand topics like air and water (and the trace materials found in them that are referred to as pollutants); energy from natural sources (i.e. solar and renewable forms), from fossil fuels and from nuclear fission; materials like plastics and polymers and their natural analogues, proteins and nucleic acids, and molecular reactivity and interconversions from simple examples like combustion to complex instances like genetic engineering and the manufacture of drugs. (15 Lectures)

Reference Book:
- John W. Hill, Terry W. McCreary & Doris K. Kolb, Chemistry for changing times 13th Ed.

SEMESTER-IV
SEC:2-PHARMACEUTICAL CHEMISTRY
(Credits: 02, F.M.: 50, End Sem: 40, Mid Sem: 10)
(Theory: 30 Lectures)

UNIT-I: Drugs & Pharmaceuticals
Drug discovery, design and development; Basic Retrosynthetic approach. Synthesis of the representative drugs of the following classes: analgesics agents, antipyretic agents, anti-inflammatory agents (Aspirin, paracetamol, Ibuprofen); antibiotics (Chloramphenicol); antibacterial and antifungal agents (Sulphonamides; Sulphanethoxazol, Sulphacetamide, Trimethoprim); antiviral agents (Acyclovir), Central Nervous System agents (Phenobarbital, Diazepam), Cardiovascular (Glyceryl trinitrate), antilaprosy (Dapsone), HIV-AIDS related drugs (AZT- Zidovudine). (20 Lectures)

UNIT-II: Fermentation
Aerobic and anaerobic fermentation. Production of (i) Ethyl alcohol and citric acid, (ii) Antibiotics; Penicillin, Cephalosporin, Chloromycetin and Streptomycin, (iii) Lysine, Glutamic acid, Vitamin B2, Vitamin B12 and Vitamin C. (10 Lectures)
PRACTICAL

1. Preparation of Aspirin and its analysis.
2. Preparation of magnesium bisilicate (Antacid).

Reference Books:

SEC:3-PESTICIDE CHEMISTRY
(Credits: 02, F.M.: 50, End Sem: 40, Mid Sem: 10)
Theory: 30 Lectures

General introduction to pesticides (natural and synthetic), benefits and adverse effects, changing concepts of pesticides, structure activity relationship, synthesis and technical manufacture and uses of representative pesticides in the following classes: Organochlorines (DDT, Gammexene); Organophosphates (Malathion, Parathion); Carbamates (Carbofuran and carbaryl); Quinones (Chloranil), Anilides (Alachlor and Butachlor).

PRACTICAL

1. To calculate acidity/alkalinity in given sample of pesticide formulations as per BIS specifications.
2. Preparation of simple organophosphates, phosphonates and thiophosphates.

Reference Books:

SEC:4-FUEL CHEMISTRY
(Credits: 02, F.M.: 50, End Sem: 40, Mid Sem: 10)
Theory: 30 Lectures

UNIT-I:
Review of energy sources (renewable and non-renewable). Classification of fuels and their calorific value.
Coal: Uses of coal (fuel and nonfuel) in various industries, its composition, carbonization of coal. Coal gas, producer gas and water gas composition and uses. Fractionation of coal tar, uses of coal tar bases chemicals, requisites of a good metallurgical coke. Coal gasification (Hydro gasification and Catalytic gasification), Coal liquefaction and Solvent Refining.
Petroleum and Petrochemical Industry: Composition of crude petroleum, Refining and different types of petroleum products and their applications. (15 Lectures)
UNIT-II:
Fractional Distillation (Principle and process), Cracking (Thermal and catalytic cracking), Reforming Petroleum and non-petroleum fuels (LPG, CNG, LNG, bio-gas, fuels derived from biomass), fuel from waste, synthetic fuels (gaseous and liquids), clean fuels. Petrochemicals: Vinyl acetate, Propylene oxide, Isoprene, Butadiene, Toluene and its derivatives Xylene.
Lubricants: Classification of lubricants, lubricating oils (conducting and non-conducting) Solid and semisolid lubricants, synthetic lubricants.
Properties of lubricants (viscosity index, cloud point, pore point) and their determination. (15 Lectures)

Reference Books:
• E. Stocchi: Industrial Chemistry, Vol -I, Ellis Horwood Ltd. UK.
COMPUTER SCIENCE (HONOURS)

SEMESTER-I

C:1-PROGRAMMING USING C
(Credit: 6, Theory: 4, Practical: 2)

UNIT- I
Introduction to Programming Language, Introduction to C Programming, Character Set, C Tokens, Keywords & Identifiers, Constants, Variables, Data Types, Variables, Storage Classes, Operators (Arithmetic, Relational, Logical, Assignment, Increment & Decrement, Conditional, Bitwise), Expressions, Input and Output Operations.

UNIT- II

UNIT- III

UNIT- IV
Pointers: Accessing the Address of a Variable, Declaring Pointer Variables, Initializations of Pointer Variable, Accessing a Variable through its Pointer, Chain of Pointers, Pointer Expressions, Pointer Increments and Scale Factor, Pointers and Arrays, Pointers and Character Strings, Array of Pointers, Pointers as Function Arguments, Functions Returning Pointers, Pointers to Functions, Pointers to Structures, Troubles with Pointers.

UNIT- V

Recommended Books:
2. Paul Deitel, Harvey Deitel, C: How to Program, 8/e, Prentice Hall.
4. B. Kernighan & D.M. Ritche, The C Programming Language, 2/e PHI.

C: 2-COMPUTER ORGANIZATION
(Credit: 6, Theory: 4, Practical: 2)

UNIT-I
Character Codes, Decimal System, Binary System, Decimal to Binary Conversion, Hexadecimal

UNIT-II

UNIT-III
Basic Structure of Computers: Computer Types, Functional Units, Input Unit, Memory Unit, Arithmetic and Logic Unit, Output Unit, Control Unit, Basic Operational Concepts, Bus Structures, Software. Machine Instructions and Programs: Numbers, Arithmetic Operations, and Characters: Number Representation, Addition of Positive Numbers, Addition and Subtraction of Signed Numbers, Overflow of Integer Arithmetic, Characters, Memory Locations and Addresses, Byte Addressability, Word Alignment, Accessing Numbers, Characters, and Character Strings, Memory Operations, Instructions and Instruction Sequencing, Register Transfer Notation, Basic Instruction Types, Instruction Execution and Straight-Line Sequencing, Branching, Condition Codes, Generating Memory Addresses, Addressing Modes, Implementation of Variables and Constants, Indirection and Pointers, Indexing and Arrays, Relative Addressing.

UNIT-IV

UNIT-V

Recommended Books:
2. William Stallings: Computer Organization and Architecture (Design for Performance), 9/e
UNIT-I

UNIT-II

UNIT-III
Sampling Distribution: sampling plans and experimental designs, Sampling distribution of a statistic, Central Limit theorem, Sampling distribution of the Sample mean and Proportion. Large Sample Estimation: Point estimation, Interval estimation, Confidence interval of population mean, Population proportion, difference between two population means, difference between two population proportions.

UNIT-IV
Large Sample Tests of Hypothesis: Test of a Population mean, Test of difference of two population means, Test of hypothesis for a binomial proportion, Test of hypothesis for the difference between two binomial proportions. Inference from Small Samples: Students t Distribution, Small Sample inferences concerning a population mean and difference between two population means, Inferences concerning a population variance and difference between two population variances.

UNIT-V

C: 3-PROGRAMMING USING C++
(Credit:6, Theory:4, Practical: 2)

UNIT-I
Principles of Object-Oriented Programming: Object-Oriented Programming (OOP) Paradigm, Basic Concepts of OOP, Benefits of OOP, Object Oriented Languages, Applications of OOP. Beginning with C++: Applications of C++, C++ statements, Example with Class, Structure of C++ Program, Creating the Source File, Compiling and Linking. Tokens, Expressions and Control Structures: Tokens, Keywords, Identifiers & Constants, Basic Data Types, User-Defined Data Types, Derived Data Types, Symbolic Constants, Type Compatibility, Declaration of Variables, Dynamic Initialization of Variables, Reference Variables, Operators in C++, Scope Resolution Operator, Member Deferencing Operators, Memory Management Operators, Manipulators, Type Cast Operators, Expressions and
their Types, Special Assignment Expressions, Implicit Conversions, Operator Overloading, Operator Precedence, Control Structures.

UNIT- II
Functions in C++: The Main Function, Function Prototyping, Call By Reference, Return by Reference, Inline Functions, Default Arguments, Const. Arguments, Function Overloading, Friend & Virtual Functions, Math. Library Functions. Classes and Objects: Specifying a Class, Defining Member Functions, Making an outside Function Inline, Nested Member Functions, Private Member Functions, Arrays within a Class, Memory Allocation for Objects, Static Data Members, Static Member Functions, Arrays of Objects, Objects as Function Arguments, Friendly Functions, Returning Objects, Cons. Member Functions, Pointer to Members, Local Classes.

UNIT- III

UNIT- IV
Inheritance : Defining Derived Classes, Single Inheritance, Making a Private Member Inheritance, Multilevel Inheritance, Multiple Inheritance, Hierarchical Inheritance, Hybrid Inheritance, Virtual Base Classes, Abstract Classes, Constructors in Derived Classes, Member Classes, Nesting of Classes. Pointers, Virtual Functions and Polymorphism: Pointers, Pointers to Objects, this Pointer, Pointers to Derived Classes, Virtual Functions, Pure Virtual Functions.

UNIT- V

Recommended Books:
1. E. Balgurusamy, Object Oriented Programming with C++ :, 4/e (TMH).
2. Paul Deitel, Harvey Deitel, "C++: How to Program",9/e. Prentice Hall.

C: 4-DATA STRUCTURES
(Credit:6, Theory:4, Practical: 2)

UNIT-I
UNIT-II

UNIT-III

UNIT IV
Queues: Definition, Representation of Queues (Array, Linked List), Circular Queue, Deque, Priority Queue, Application of Queues (Simulation, CPU Scheduling in Multiprogramming Environment, Round Robin Algorithm).

UNIT V
Tree: Binary Trees, Properties of Binary Tree, Linear Representation of Binary a Binary Tree, Linked Representation of a Binary Tree, Physical Implementation of Binary Tree in Memory, Operations on Binary Tree (Insertion, Deletion, Traversal, Merging of two Binary Trees), Types of Binary Trees (Expression Tree, Binary Search Tree, Heap Tree, Threaded Binary Trees, Height Balanced Binary Tree, Weighted Binary Tree, Decision Trees).

Recommended Books:
1. D. Samanta, Classic Data Structures:, 2/e (PHI).

GE: 2-NUMERICAL TECHNIQUES
Credits; 4

UNIT-I

UNIT-II

UNIT-III
Numerical Integration: Trapezoidal Rule, Composite Trapezoidal rule, Simpsons 1/3 rule, Simpsons 3/8 rule, Gaussian Quadrature formulae (1-point, 2-point, 3-point)

UNIT-IV
UNIT-V

Recommended Books:
1. E. Ward Cheney and David R. Kincaid, Numerical Methods and Applications CENGAGE Learning India Private Ltd., New Delhi.
3. S.S. Sastry, Introductory Methods of Numerical Analysis, 5/e, EEE

SEMESTER-III

C: 5-OPERATING SYSTEMS
(Credit:6, Theory:4, Practical: 2)

UNIT-I

UNIT-II

UNIT-III

UNIT-IV

UNIT-V

Recommended Books:

C: 6-DATABASE MANAGEMENT SYSTEM
(Credit:6, Theory:4, Practical: 2)

UNIT-I

UNIT-II
Relational Model: The Relational Data Model and Relational Database Constraints, The Relational Algebra and Relational Calculus.

UNIT-III

UNIT-IV
Functional Dependencies and Normalization for Relational Databases, Relational Database Algorithms and Further Dependencies, Practical Database Design Methodology and use of UML Diagrams.

UNIT-V

Recommended Books:

C: 7-DISCRETE STRUCTURES
(Credit:6, Theory:4, Practical: 2)

UNIT-II
UNIT-III

UNIT-IV

UNIT-V
Graphs: Graphs and Graph Models, Graph Terminology and Special Types of Graphs, Havel-Hakimi Theorem, Representing Graphs and Graph Isomorphism, Connectivity, Cut-Sets, Euler and Hamiltonian Paths, Shortest-Path Problem, Planar Graphs, Graph Coloring, Network Flows.

Recommended Books:

GE:3-ELECTRICITY & MAGNETISM
(Credit: 06, Theory:04, Practical:02)

UNIT-I

UNIT-II

UNIT-III

UNIT-IV
Magnetic Field: Magnetic force between current elements and definition of Magnetic Field B. Biot-Savarts Law and its simple applications: straight wire and circular loop. Current Loop as a Magnetic

UNIT-V

Recommended Books:
2. Edward M. Purcell,Electricity and Magnetism, 1986 McGraw-Hill Education

SEMESTER-IV
C: 8-JAVA PROGRAMMING
(Credit:6, Theory:4, Practical: 2)

UNIT-I
Introduction to Java: Java Architecture and Features, Understanding the semantic and syntax differences between C++ and Java, Compiling and Executing a Java Program, Variables, Constants, Keywords Data Types, Operators (Arithmetic, Logical and Bitwise) and Expressions, Comments, Doing Basic Program Output, Decision Making Constructs (conditional statements and loops) and Nesting, Java Methods (Defining, Scope, Passing and Returning Arguments, Type Conversion and Type and Checking, Built-in Java Class Methods).

UNIT-II
UNIT-III
Inheritance, Interfaces, Packages, Enumerations, Autoboxing and Metadata: Inheritance: (Single Level and Multilevel, Method Overriding, Dynamic Method Dispatch, Abstract Classes), Interfaces and Packages, Extending interfaces and packages, Package and Class Visibility, Using Standard Java Packages (util, lang, io, net), Wrapper Classes, Autoboxing/Unboxing, Enumerations and Metadata.

UNIT-IV
Exception Handling, Threading, Networking and Database Connectivity: Exception types, uncaught exceptions, throw, built-in exceptions, Creating your own exceptions; Multi-threading: The Thread class and Runnable interface, creating single and multiple threads, Thread prioritization, synchronization and communication, suspending/resuming threads. Using java.net package, Overview of TCP/IP and Datagram programming. Accessing and manipulating databases using JDBC.

UNIT-V
Applets and Event Handling: Java Applets: Introduction to Applets, Writing Java Applets, Working with Graphics, Incorporating Images & Sounds. Event Handling Mechanisms, Listener Interfaces, Adapter and Inner Classes. The design and Implementation of GUls using the AWT controls, Swing components of Java Foundation Classes such as labels, buttons, text fields, layout managers, menus, events and listeners; Graphic objects for drawing figures such as lines, rectangles, ovals, using different fonts. Overview of servlets.

Recommended Books:
1. E. Balagurusamy, Programming with Java, 4/e, TMH

C: 9-COMPUTER NETWORK
(Credit:6, Theory:4, Practical: 2)

UNIT-I

UNIT-II

UNIT-III

UNIT-IV
Error Detection and Correction: Introduction, Block Coding, Linear Block Codes, Cyclic Codes,

UNIT-V

Recommended Books:
1. B. A. Forouzan, Data Communications and Networking, 4/e, THM ,2007
2. A. S. Tanenbaum, & David J. Wetherall, Computer Networks, 5/e, Pearson

C: 10-COMPUTER GRAPHICS
(Credit:6, Theory:4, Practical: 2)

UNIT-I

UNIT-II

UNIT-III
Three Dimensional Object Representations: Curved Surfaces, Quadratic Surfaces, Spline Representations, Bezier Spline Curves and Surfaces, B-Spline Curves and Surfaces, Octrees, BSP Trees, Fractal Geometry Methods, Gamma correction.

UNIT-IV

UNIT-V
Illumination Models: Basic Illumination Models, Displaying light Intensities, Halftone Patterns and Dithering techniques, Polygon-Rendering Methods (Gouroud Shading, Phong Shading), Ray-Tracing Methods (Basic Ray-Tracing Algorithm, Ray-Surface Intersection Calculations). Computer Animation, Hierarchical Modeling (introductory idea only).
Recommended Books:

SEC: II-ANDROID PROGRAMMING
(Credit:02)

UNIT-I

UNIT-II
Development Tools: Installing and using Eclipse with ADT plug-in, Installing Virtual machine for Android sandwich/Jelly bean (Emulator), configuring the installed tools, creating a android project, Hello Word, run on emulator, Deploy it on USB-connected Android device.

UNIT-III
User Interface Architecture: Application context, intents, Activity life cycle, multiple screen sizes.

UNIT-IV
User Interface Design: Form widgets, Text Fields, Layouts, Button control, toggle buttons, Spinners (Combo boxes), Images, Menu, Dialog.

UNIT-V
Database: Understanding of SQLite database, connecting with the database.

Recommended Books:
2. M. Burton, & D. Felker, Android Application Development for Dummies, 2/e, Wiley India.

GE:IV-ELECTRONICS
(Credit: 06, Theory:04, Practical:02)

UNIT-I

UNIT-II
Two-terminal Devices and their Applications: (1) Rectifier Diode: Half-wave Rectifiers. Centre-tapped and Bridge Full-wave Rectifiers, Calculation of Ripple Factor and Rectification Efficiency, C-filter (2) Zener Diode and Voltage Regulation. Principle and structure of (1) LEDs, (2) Photodiode

UNIT-III

UNIT-IV

UNIT-V

Recommended Books:

SEMESTER-V
C: 11-INTERNET TECHNOLOGY
(Credit: 06, Theory:04, Practical:02)

UNIT-I
Java: Use of Objects, Array and ArrayList class

UNIT-II
JavaScript: Data types, operators, functions, control structures, events and event handling.

UNIT-III

UNIT-IV
JSP: Introduction to Java Server Pages, HTTP and Servlet Basics, The Problem with Servlets, The
Anatomy of a JSP Page, JSP Processing, JSP Application Design with MVC, Setting Up the JSP Environment, Implicit JSP Objects, Conditional Processing, Displaying Values, Using an expression to Set an Attribute, Declaring Variables and Methods, Error Handling and Debugging, Sharing Data Between JSP Pages, Requests, and Users, Database Access.

UNIT-V
Java Beans: Java Beans Fundamentals, JAR files, Introspection, Developing a simple Bean, Connecting to DB

Recommended Books:

C: 12-SOFTWARE ENGINEERING
(Credit: 06, Theory:04, Practical:02)

UNIT-I

UNIT-II

UNIT-III

UNIT-IV

UNIT-V

Recommended Books:
1. I. Sommerville, Software Engineering, 9/e, Addison Wesley.
2. R. Mall, Fundamentals of Software Engineering, 3/e, PHI.

DSE: 1-Information Security
(Credit: 06, Theory: 04, Practical: 02)

UNIT-I

UNIT-II
Program Security: Secure programs, Non malicious Program errors, Malicious codes virus, Trap doors, Salami attacks, Covert channels, Control against program.

UNIT-III

UNIT-IV

UNIT-V

Recommended Books:

DSE: 2-MICROPROCESSOR
(Credit: 06, Theory: 04, Practical: 02)

UNIT-I

UNIT-II ARM Assembly Language Programming: Data processing instructions, Data transfer instructions, Control flow instructions, Writing simple assembly language programs. ARM Organization and Implementation: Pipeline, Types, 3-stage pipeline ARM organization, 5-stage pipeline
ARM organization, ARM instruction execution, ARM implementation, The ARM coprocessor interface.

UNIT-III The ARM Instruction Set: Introduction, Exceptions, Conditional execution, Branch and Branch with Link (B, BL), Branch, Branch with Link and exchange (BX, BLX), Software Interrupt (SWI), Data processing instructions, Multiply instructions, Single word and unsigned byte data transfer instructions, Half-word and signed byte data transfer instructions, Multiple register transfer instructions, Status register to general register transfer instructions, General register to status register transfer instructions, Coprocessor instructions. Coprocessor data operations, Coprocessor data transfers, Coprocessor register transfers, Breakpoint instruction (BRK - architecture v5T only), Unused instruction space, Memory faults, ARM architecture variants.

UNIT-IV Architectural Support for High-Level Languages: Abstraction in software design, Data types, Floating-point data types, The ARM floating-point architecture, Expressions, Conditional statements, Loops, Functions and procedures, Use of memory, Run-time environment, Examples and exercises.

Recommended Books:

SEMMESTER-VI

C: 13-ARTIFICIAL INTELLIGENCE
(Credit: 06, Theory:04, Practical:02)

UNIT-I Intelligent Agents, Solving problems by searching, Uninformed search strategies (BFS, DFS, DLS, IDS, BD and Uniform cost search), Informed search and exploration (Greedy Best first, A* and its variations) Constraint satisfaction Problems, Adversarial search (Alpha-beta pruning).

UNIT-II Knowledge and reasoning, logical agent (Wumpus world), Propositional logic, First order logic, Inference in first order logic (Forward chaining, backward chaining, Resolution), Knowledge representation.

UNIT-III Planning, Partial-Order planning, Planning Graphs, Planning and acting in the real world, Uncertain knowledge and reasoning.

UNIT-IV Learning from Observations, Decision trees, Neural network (Multilayer), Reinforcement Learning.
UNIT-V
NLP, Communication, A formal grammar for a fragment of English, Syntactic analysis (chat parsing),
semantic Interpretation, Ambiguity of grammar, Machine Translation.

Recommended Books:
1. Stuart Russell and Peter Norvig, ARTIFICIAL INTELLIGENCE A MODERN APPROACH, 2/e,
 PHI.

C:14-DESIGN AND ANALYSIS OF ALGORITHMS
(Credit: 06, Theory:04, Practical:02)

UNIT-I
Analysis and Design of Algorithm (Case study insertion sort and merge sort) Asymptotic Analysis,
Divide and Conquer, Recurrence Relations, Strassens Matix Multiplication.

UNIT-II
Sorting: Quick sort, heap sort, Counting sort, lower bound for sorting, Randomized quicksort, Order
Statistics.

UNIT-III
Amotized Analysis (Aggregate analysis, Accounting analysis, Potential analysis), 2-3-4 tree Advanced
Data structure: Fibonacci heap, Redblack tree, hashing, data structure on disjoint set, Sciccinet
Data Structure.

UNIT-IV
Dynamic Programming : Matrix Chain multiplication, LCS, TSP, Branch and Bound. Greedy Algo-
ithm: MST: Krushkal, Prims, Dijkstra Algorithm, Huffman Coding, Maxflow matching, Compu-
tational geometry: Convex Hall, 0-1-knaplock, fractional knapsack, Back tracking (4-Queen Prob.)

UNIT-V
Complexity Class: P, PSPACE, NP, NP-Hard, NP Complete, Satisfiability, Cheque, Vertex Cover,
Independent set, Exact cover, Graph Coloring, Hamiltonian, Cycle Matching. Approximation Algo-
rithm: Vertex Cove, TSP, Independent Set, Sum of subset.

Recommended Books:
1. T.H. Cormen, Charles E. Leiserson, Ronald L. Rivest, Clifford Stein Introduction to Algorithms,
 PHI, 3/e, 2009.
2. Sarabasse & A.V. Gelder Computer Algorithm, Introduction to Design and Analysis, Pearson
 3/e, 1999.
 Press.
4. A.V. Aho, J.E. Hopcroft, & J.D. Ullman, The Design and Analysis of Computer Algorithm,
 Pearson.

DSE:3-CLOUD COMPUTING
(Credit: 06, Theory:04, Practical:02)

UNIT-I
Overview of Computing Paradigm: Recent trends in Computing : Grid Computing, Cluster Com-

UNIT-II
Cloud Computing Architecture: Comparison with traditional computing architecture (client/server), Services provided at various levels, Service Models- Infrastructure as a Service(IaaS), Platform as a Service(PaaS), Software as a Service(SaaS), How Cloud Computing Works, Deployment Models- Public cloud, Private cloud, Hybrid cloud, Community cloud, Case study of NIST architecture.

UNIT-III
Case Studies: Case Study of Service, Model using Google App Engine, Microsoft Azure, Amazon EC2, Eucalyptus.

UNIT-IV
Service Management in Cloud Computing, Service Level Agreements (SLAs), Billing & Accounting, Comparing Scaling Hardware: Traditional vs. Cloud, Economics of Scaling.

UNIT-V

Recommended Books:

DSE:4-PROJECT WORK (Credit: 06)
BACHELOR IN COMPUTER APPLICATIONS (BCA)

SEMESTER-I

C-1: PROGRAMMING USING C
(Credit: 6, Theory: 4, Practical: 2)

UNIT-I
Introduction to Programming Language, Introduction to C Programming, Character Set, C Tokens, Keywords & Identifiers, Constants, Variables, Data Types, Variables, Storage Classes, Operators (Arithmetic, Relational, Logical, Assignment, Increment & Decrement, Conditional, Bitwise), Expressions, Input and Output Operations.

UNIT-II

UNIT-III

UNIT-IV
Pointers: Accessing the Address of a Variable, Declaring Pointer Variables, Initializations of Pointer Variable, Accessing a Variable through its Pointer, Chain of Pointers, Pointer Expressions, Pointer Increments and Scale Factor, Pointers and Arrays, Pointers and Character Strings, Array of Pointers, Pointers as Function Arguments, Functions Returning Pointers, Pointers to Functions, Pointers to Structures, Troubles with Pointers.

UNIT-V

Recommended Books:
2. Paul Deitel, Harvey Deitel, C: How to Program, 8/e, Prentice Hall.
4. B. Kernighan & D.M. Ritche, The C Programming Language, 2/e PHI.

C: 2-COMPUTER ORGANIZATION
(Credit: 6, Theory: 4, Practical: 2)

UNIT-I
Character Codes, Decimal System, Binary System, Decimal to Binary Conversion, Hexadecimal

UNIT-II

UNIT-III
Basic Structure of Computers: Computer Types, Functional Units, Input Unit, Memory Unit, Arithmetic and Logic Unit, Output Unit, Control Unit, Basic Operational Concepts, Bus Structures, Software. Machine Instructions and Programs: Numbers, Arithmetic Operations, and Characters: Number Representation, Addition of Positive Numbers, Addition and Subtraction of Signed Numbers, Overflow of Integer Arithmetic, Characters, Memory Locations and Addresses, Byte Addressability, Word Alignment, Accessing Numbers, Characters, and Character Strings, Memory Operations, Instructions and Instruction Sequencing, Register Transfer Notation, Basic Instruction Types, Instruction Execution and Straight-Line Sequencing, Branching, Condition Codes, Generating Memory Addresses, Addressing Modes, Implementation of Variables and Constants, Indirection and Pointers, Indexing and Arrays, Relative Addressing.

UNIT-IV

UNIT-V

Recommended Books:
UNIT-I

UNIT-II

UNIT-III

UNIT-IV

UNIT-V
Graphs: Graphs and Graph Models, Graph Terminology and Special Types of Graphs, Havel-Hakimi Theorem, Representing Graphs and Graph Isomorphism, Connectivity, Cut-Sets, Euler and Hamiltonian Paths, Shortest-Path Problem, Planar Graphs, Graph Coloring, Network Flows.

Recommended Books:

SEMESTER-II

C:3-PROGRAMMING USING C++
(Credit:6, Theory:4, Practical: 2)

UNIT-I
Principles of Object-Oriented Programming: Object-Oriented Programming (OOP) Paradigm, Basic Concepts of OOP, Benefits of OOP, Object Oriented Languages, Applications of OOP. Beginning
with C++: Applications of C++, C++ statements, Example with Class, Structure of C++ Program, Creating the Source File, Compiling and Linking. Tokens, Expressions and Control Structures: Tokens, Keywords, Identifiers & Constants, Basic Data Types, User-Defined Data Types, Derived Data Types, Symbolic Constants, Type Compatibility, Declaration of Variables, Dynamic Initialization of Variables, Reference Variables, Operators in C++, Scope Resolution Operator, Member Deferencing Operators, Memory Management Operators, Manipulators, Type Cast Operators, Expressions and their Types, Special Assignment Expressions, Implicit Conversions, Operator Overloading, Operator Precedence, Control Structures.

UNIT- II
Functions in C++: The Main Function, Function Prototyping, Call By Reference, Return by Reference, Inline Functions, Default Arguments, Const. Arguments, Function Overloading, Friend & Virtual Functions, Math. Library Functions. Classes and Objects: Specifying a Class, Defining Member Functions, Making an outside Function Inline, Nested Member Functions, Private Member Functions, Arrays within a Class, Memory Allocation for Objects, Static Data Members, Static Member Functions, Arrays of Objects, Objects as Function Arguments, Friendly Functions, Returning Objects, Cons. Member Functions, Pointer to Members, Local Classes.

UNIT- III

UNIT- IV
Inheritance : Defining Derived Classes, Single Inheritance, Making a Private Member Inheritance, Multilevel Inheritance, Multiple Inheritance, Hierarchical Inheritance, Hybrid Inheritance, Virtual Base Classes, Abstract Classes, Constructors in Derived Classes, Member Classes, Nesting of Classes. Pointers, Virtual Functions and Polymorphism: Pointers, Pointers to Objects, this Pointer, Pointers to Derived Classes, Virtual Functions, Pure Virtual Functions.

UNIT- V

Recommended Books:
1. E. Balgurusamy, Object Oriented Programming with C++ :, 4/e (TMH).
2. Paul Deitel, Harvey Deitel, "C++: How to Program",9/e. Prentice Hall.
UNIT-I

UNIT-II

UNIT-III

UNITIV
Queues: Definition, Representation of Queues (Array, Linked List), Circular Queue, Deque, Priority Queue, Application of Queues (Simulation, CPU Scheduling in Multiprogramming Environment, Round Robin Algorithm).

UNITV
Tree: Binary Trees, Properties of Binary Tree, Linear Representation of Binary a Binary Tree, Linked Representation of a Binary Tree, Physical Implementation of Binary Tree in Memory, Operations on Binary Tree (Insertion, Deletion, Traversal, Merging of two Binary Trees), Types of Binary Trees (Expression Tree, Binary Search Tree, Heap Tree, Threaded Binary Trees, Height Balanced Binary Tree, Weighted Binary Tree, Decision Trees).

Recommended Books:
1. D. Samanta, Classic Data Structures:, 2/e (PHI).

GE:2-NUMERICAL TECHNIQUES
Credits:4

UNIT-I

UNIT-II
UNIT-III
Numerical Integration: Trapezoidal Rule, Composite Trapezoidal rule, Simpsons 1/3 rule, Simpsons 3/8 rule, Gaussian Quadrature formulae (1-point, 2-point, 3-point)
UNIT-IV
UNIT-V
Recommended Books:
1. E. Ward Cheney and David R. Kincaid , Numerical Methods and Applications CENGAGE Learning India Private Ltd., New Delhi.
3. S.S. Sastry, Introductory Methods of Numerical Analysis, 5/e, EEE

SEMESTER-III

C:5-JAVA PROGRAMMING
(Credit:6, Theory:4, Practical: 2)

UNIT-I
Introduction to Java: Java Architecture and Features, Understanding the semantic and syntax differences between C++ and Java, Compiling and Executing a Java Program, Variables, Constants, Keywords Data Types, Operators (Arithmetic, Logical and Bitwise) and Expressions, Comments, Doing Basic Program Output, Decision Making Constructs (conditional statements and loops) and Nesting, Java Methods (Defining, Scope, Passing and Returning Arguments, Type Conversion and Type and Checking, Built-in Java Class Methods).

UNIT-II

UNIT-III
Inheritance, Interfaces, Packages, Enumerations, Autoboxing and Metadata: Inheritance: (Single Level and Multilevel, Method Overriding, Dynamic Method Dispatch, Abstract Classes), Interfaces
and Packages, Extending interfaces and packages, Package and Class Visibility, Using Standard Java Packages (util, lang, io, net), Wrapper Classes, Autoboxing/Unboxing, Enumerations and Metadata.

UNIT-IV
Exception Handling, Threading, Networking and Database Connectivity: Exception types, uncaught exceptions, throw, built-in exceptions, Creating your own exceptions; Multi-threading: The Thread class and Runnable interface, creating single and multiple threads, Thread prioritization, synchronization and communication, suspending/resuming threads. Using java.net package, Overview of TCP/IP and Datagram programming. Accessing and manipulating databases using JDBC.

UNIT-V
Applets and Event Handling: Java Applets: Introduction to Applets, Writing Java Applets, Working with Graphics, Incorporating Images & Sounds. Event Handling Mechanisms, Listener Interfaces, Adapter and Inner Classes. The design and Implementation of GUIs using the AWT controls, Swing components of Java Foundation Classes such as labels, buttons, text fields, layout managers, menus, events and listeners; Graphic objects for drawing figures such as lines, rectangles, ovals, using different fonts. Overview of servlets.

Recommended Books:
1. E. Balagurusamy, Programming with Java, 4/e, TMH

C: 6-COMPUTER ARCHITECTURE
(Credit:6, Theory:4, Practical: 2)

C: 7-OPERATING SYSTEMS
(Credit:6, Theory:4, Practical: 2)

UNIT-I

UNIT-II

UNIT-III
UNIT-IV

UNIT-V

Recommended Books:

SEC:1-HTML PROGRAMMING
(Credit:2, Theory:4, Practical: 2)

UNIT-I: Introduction The Basics: The Head, the Body, Colors, Attributes, Lists, ordered and unordered
UNIT-II: Links: Introduction, Relative Links, Absolute Links, Link Attributes, Using the ID Attribute to Link within a Document.
UNIT-III: Images: Putting an Image on a Page, Using Images as Links, Putting an Image in the Background
UNIT-V: Tables Creating a Table, Table Headers, Captions, Spanning Multiple Columns, Styling Table
UNIT-V: Forms: Basic Input and Attributes, Other Kinds of Inputs, Styling forms with CSS, Where To Go From Here

Recommended Books:
Introduction to HTML and CSS –O’Reilly

GE:3-STATISTICS & PROBABILITY
(Credit:6, Theory:4, Practical: 2)

UNIT-I

UNIT-II
UNIT-III
Sampling Distribution: sampling plans and experimental designs, Sampling distribution of a statistic, Central Limit theorem, Sampling distribution of the Sample mean and Proportion. Large Sample Estimation: Point estimation, Interval estimation, Confidence interval of population mean, Population proportion, difference between two population means, difference between two population proportions.

UNIT-IV
Large Sample Tests of Hypothesis: Test of a Population mean, Test of difference of two population means, Test of hypothesis for a binomial proportion, Test of hypothesis for the difference between two binomial proportions. Inference from Small Samples: Students t Distribution, Small Sample inferences concerning a population mean and difference between two population means, Inferences concerning a population variance and difference between two population variances.

UNIT-V

Recommended Books:
1. William Mendenhall, Robert J. Beaver, Barbara M. Beaver, Probability and Statistics 14/e, CENGAGE Learning.

SEMESTER-IV

C: 8-DATA COMMUNICATIONS
(Credit:6, Theory:4, Practical: 2)

UNIT-I

UNIT-II

UNIT-III

UNIT-IV
Error Detection and Correction: Introduction, Block Coding, Linear Block Codes, Cyclic Codes,

UNIT-V

Recommended Books:

C: 9-DATABASE SYSTEMS
(Credit:6, Theory:4, Practical: 2)

UNIT-I

UNIT-II
Relational Model: The Relational Data Model and Relational Database Constraints, The Relational Algebra and Relational Calculus.

UNIT-III

UNIT-IV
Functional Dependencies and Normalization for Relational Databases, Relational Database Algorithms and Further Dependencies, Practical Database Design Methodology and use of UML Diagrams.

UNIT-V

Recommended Books:

C: 10-MICROPROCESSOR
(Credit:6, Theory:4, Practical: 2)

UNIT-I
An Introduction to Processor Design: Processor architecture and organization, Abstraction in

UNIT-II
ARM Assembly Language Programming: Data processing instructions, Data transfer instructions, Control flow instructions, Writing simple assembly language programs. ARM Organization and Implementation: Pipeline, Types, 3-stage pipeline ARM organization, 5-stage pipeline ARM organization, ARM instruction execution, ARM implementation, The ARM coprocessor interface.

UNIT-III
The ARM Instruction Set: Introduction, Exceptions, Conditional execution, Branch and Branch with Link (B, BL), Branch, Branch with Link and exchange (BX, BLX), Software Interrupt (SWI), Data processing instructions, Multiply instructions, Single word and unsigned byte data transfer instructions, Half-word and signed byte data transfer instructions, Multiple register transfer instructions, Status register to general register transfer instructions, General register to status register transfer instructions, Coprocessor instructions. Coprocessor data operations, Coprocessor data transfers, Coprocessor register transfers, Breakpoint instruction (BRK - architecture v5T only), Unused instruction space, Memory faults, ARM architecture variants.

UNIT-IV
Architectural Support for High-Level Languages: Abstraction in software design, Data types, Floating-point data types, The ARM floating-point architecture, Expressions, Conditional statements, Loops, Functions and procedures, Use of memory, Run-time environment, Examples and exercises.

UNIT-V

Recommended Books:

SEC:2-PHP PROGRAMMING
(Credit:2)

UNIT-I: Introduction to PHP: PHP introduction, inventions and versions, important tools and software requirements (like Web Server, Database, Editors etc.), PHP with other, technologies, scope of PHP, Basic Syntax, PHP variables and constants, Types of data in PHP, Expressions, scopes of a variable (local, global), PHP Operators: Arithmetic, Assignment, Relational, Logical operators, Bitwise, ternary and MOD operator. PHP operator Precedence and associativity
UNIT-II: Handling HTML form with PHP: Capturing Form Data, GET and POST form methods, Dealing with multi value fields, Redirecting a form after submission. PHP conditional events and
Loops: PHP IF Else conditional statements (Nested IF and Else), Switch case, while, For and Do While Loop, Goto, Break, Continue and exit

UNIT-III: PHP Functions: Function, Need of Function, declaration and calling of a function, PHP Function with arguments, Default Arguments in Function, Function argument with call by value, call by reference, Scope of Function Global and Local

UNIT-IV: String Manipulation and Regular Expression: Creating and accessing String, Searching & Replacing String, Formatting, joining and splitting String, String Related Library functions, Use and advantage of regular expression over inbuilt function, Use of pregmatch(), pregreplace(), pregsplit() functions in regular expression.

UNIT-V: Array: Anatomy of an Array, Creating index based and Associative array, Accessing array, Looping with Index based array, with associative array using each() and foreach(), Some useful Library function.

GE:4-PROGRAMMING in VISUAL BASIC
(Credit:6, Theory:4, Practical:2)

UNIT-I
GUI Environment: Introduction to graphical user interface (GUI), programming language (procedural, object oriented, event driven), the GUI environment, compiling, debugging, and running the programs. Controls: Introduction to controls textboxes, frames, check boxes, option buttons, images, setting borders and styles, the shape control, the line control, working with multiple controls and their properties, designing the user interface, keyboard access, tab controls, default & cancel property, coding for controls.

UNIT-II
Operations: Data types, constants, named & intrinsic, declaring variables, scope of variables, val function, arithmetic operations, formatting data. Decision Making: If statement, comparing strings, compound conditions (and, or, not), nested if statements, case structure, using if statements with option buttons & check boxes, displaying message in message box, testing whether input is valid or not.

UNIT-III
Modular programming: Menus, sub-procedures and sub-functions defining / creating and modifying a menu, using common dialog box, creating a new sub-procedure, passing variables to procedures, passing argument by value or by reference, writing a function/procedure. Forms Handling: Multiple forms creating, adding, removing forms in project, hide, show method, load, unload statement, me keyword, referring to objects on a different forms.

UNIT-IV
Iteration Handling: Do/loops, for/next loops, using msgbox function, using string function Arrays and Grouped Data Control: Arrays - 1-dimension arrays, initializing an array using for each, user-defined data types, accessing information with user-defined data types, using list boxes with array, two dimensional arrays, lists, loops and printing list boxes & combo boxes, filling the list using property window/additem method, clear method, list box properties, removing an item from a list, list box/combo box operations.

UNIT-V
Database Connectivity: Database connectivity of forms with back end tool like mysql, populating
the data in text boxes, list boxes etc. searching of data in database. using forms. Updating/editing of data based on a criterion.

Recommended Books:

SEMESTER-V

C:11-SOFTWARE ENGINEERING
(Credit: 06, Theory:04, Practical:02)

UNIT-I

UNIT-II

UNIT-III

UNIT-IV

UNIT-V

Recommended Books:
1. I. Sommerville, Software Engineering, 9/e, Addison Wesley.
2. R. Mall, Fundamentals of Software Engineering, 3/e, PHI.
C:12-COMPUTER GRAPHICS
(Credit:6, Theory:4, Practical: 2)

UNIT-I

UNIT-II

UNIT-III
Three Dimensional Object Representations: Curved Surfaces, Quadratic Surfaces, Spline Representations, Bezier Spline Curves and Surfaces, B-Spline Curves and Surfaces, Octrees, BSP Trees, Fractal Geometry Methods, Gamma correction.

UNIT-IV

UNIT-V
Illumination Models: Basic Illumination Models, Displaying light Intensities, Halftone Patterns and Dithering techniques, Polygon-Rendering Methods (Gouroud Shading, Phong Shading), Ray-Tracing Methods (Basic Ray-Tracing Algorithm, Ray-Surface Intersection Calculations). Computer Animation, Hierarchical Modeling (introductory idea only).

Recommended Books:

DSE:1-ACCOUNTING & FINANCIAL MANAGEMENT
(Credit:6, Theory:4, Practical: 2)

UNIT-I
Accounting: The Language of Business, Accounting: An Information system, users of Accounting Information, Branches of Accounting, Generally Accepted Accounting principles, The Accounting

UNIT-II
Cash & Bank; Bank Reconciliation, Fixed Assets, Liabilities & shareholders Equity, Expenses & Revenues, Depreciation, Preparation of Final Accounts: Profit and Loss Account, Balance Sheet.

UNIT-III
Analysis and Interpretation of Financial Statements: Ratio Analysis and Trend Analysis, Cost and cost Terminology, Classification of costs, Statement of costs.

UNIT-IV

UNIT-V
Budgetary Control System: Flexible Budgets, Master Budgets: Zero-base Budgeting Responsibility Accounting: Responsibility Centers, Management Control Systems

Recommended Books:
1. T. S. Grewal : Introduction to Accounting (S.Chand).
3. S. N. Maheshwari : Management Accounting.

DSE:2-PROGRAMMING IN NET(Credit:6, Theory:4, Practical: 2)

SEMESTER-VI

C:13-INTERNET TECHNOLOGY
(Credit:6, Theory:4, Practical: 2)

UNIT-I
Java: Use of Objects, Array and ArrayList class.

UNIT-II
JavaScript: Data types, operators, functions, control structures, events and event handling.

UNIT-III

UNIT-IV
JSP: Introduction to Java Server Pages, HTTP and Servlet Basics, The Problem with Servlets, The Anatomy of a JSP Page, JSP Processing, JSP Application Design with MVC, Setting Up the JSP Environment, Implicit JSP Objects, Conditional Processing, Displaying Values, Using an expression to Set an Attribute, Declaring Variables and Methods, Error Handling and Debugging, Sharing Data Between JSP Pages, Requests, and Users, Database Access.
UNIT-V
Java Beans: Java Beans Fundamentals, JAR files, Introspection, Developing a simple Bean, Connecting to DB.

Recommended Books:

UNIT-I

UNIT-II

UNIT-III

UNIT-IV
Internet and Multimedia: www and HTML, multimedia on the web web servers, web browsers, web page makers and site builders.

UNIT-V
Making Multimedia: Stages of a multimedia project, Requirements to make good multimedia, Multimedia Hardware - Macintosh and Windows production Platforms, Hardware peripherals - Connections, Memory and storage devices, Multimedia software and Authoring tools.

Recommended Books:

DSE:3-E-COMMERCE
(Credit:6, Theory:4, Practical: 2)

UNIT-I
An introduction to Electronic commerce: What is E-Commerce (Introduction And Definition), Main

UNIT-II
The Internet and WWW: Evolution of Internet, Domain Names and Internet Organization (.edu, .com, .mil, .gov, .net etc.) , Types of Network, Internet Service Provider, World Wide Web, Internet & Extranet, Role of Internet in B2B Application, building own Website, Cost, Time, Reach, Registering a Domain Name, Web promotion, Target email, Baner, Exchange, Shopping Bots.

UNIT-III

UNIT-IV

UNIT-V

Recommended Books:
2. E- Commerce:-Kamlesh K Bajaj and Debjani Nag.
3. Electronic commerce-Gray P. Schneider.

DSE:4-PROJECT WORK
(Credit:6)
BACHELOR OF SCIENCE (ITM)

SEMESTER-I

C:1-PROGRAMMING USING C
(Credit:6, Theory:4, Practical: 2)

UNIT- I
Introduction to Programming Language, Introduction to C Programming , Character Set, C Tokens, Keywords & Identifiers, Constants, Variables, Data Types, Variables , Storage Classes, Operators (Arithmetic, Relational, Logical , Assignment, Increment & Decrement, Conditional , Bitwise), Expressions , Input and Output Operations.

UNIT- II

UNIT- III

UNIT- IV
Pointers: Accessing the Address of a Variable, Declaring Pointer Variables, Initializations of Pointer Variable, Accessing a Variable through its Pointer, Chain of Pointers, Pointer Expressions, Pointer Increments and Scale Factor, Pointers and Arrays., Pointers and Character Strings, Array of Pointers, Pointers as Function Arguments, Functions Returning Pointers, Pointers to Functions, Pointers to Structures, Troubles with Pointers.

UNIT- V

Recommended Books:
2. Paul Deitel, Harvey Deitel, C: How to Program, 8/e, Prentice Hall.
4. B. Kernighan & D.M. Ritche, The C Programming Language, 2/e PHI.

C: 2-COMPUTER ORGANIZATION
(Credit:6, Theory:4, Practical: 2)

UNIT-I
Character Codes, Decimal System, Binary System, Decimal to Binary Conversion, Hexadecimal

UNIT-II

UNIT-III
Basic Structure of Computers: Computer Types, Functional Units, Input Unit, Memory Unit, Arithmetic and Logic Unit, Output Unit, Control Unit, Basic Operational Concepts, Bus Structures, Software. Machine Instructions and Programs: Numbers, Arithmetic Operations, and Characters: Number Representation, Addition of Positive Numbers, Addition and Subtraction of Signed Numbers, Overflow of Integer Arithmetic, Characters, Memory Locations and Addresses, Byte Addressability, Word Alignment, Accessing Numbers, Characters, and Character Strings, Memory Operations, Instructions and Instruction Sequencing, Register Transfer Notation, Basic Instruction Types, Instruction Execution and Straight-Line Sequencing, Branching, Condition Codes, Generating Memory Addresses, Addressing Modes, Implementation of Variables and Constants, Indirection and Pointers, Indexing and Arrays, Relative Addressing.

UNIT-IV

UNIT-V

Recommended Books:
2. William Stallings: Computer Organization and Architecture (Design for Performance), 9/e

C: 3-PERSONAL MANAGEMENT & ORGANIZATIONAL BEHAVIOUR
GE: 1-DISCRETE STRUCTURES
(Credit: 6, Theory: 4, Practical: 2)

UNIT-V Graphs: Graphs and Graph Models, Graph Terminology and Special Types of Graphs, Havel-Hakimi Theorem, Representing Graphs and Graph Isomorphism, Connectivity, Cut-Sets, Euler and Hamiltonian Paths, Shortest-Path Problem, Planar Graphs, Graph Coloring, Network Flows.

Recommended Books:

SEMESTER-II

C: 4-PROGRAMMING USING C++
(Credit: 6, Theory: 4, Practical: 2)

UNIT-I Principles of Object-Oriented Programming: Object-Oriented Programming (OOP) Paradigm, Basic
Concepts of OOP, Benefits of OOP, Object Oriented Languages, Applications of OOP. Beginning with C++: Applications of C++, C++ statements, Example with Class, Structure of C++ Program, Creating the Source File, Compiling and Linking. Tokens, Expressions and Control Structures: Tokens, Keywords, Identifiers & Constants, Basic Data Types, User-Defined Data Types, Derived Data Types, Symbolic Constants, Type Compatibility, Declaration of Variables, Dynamic Initialization of Variables, Reference Variables, Operators in C++, Scope Resolution Operator, Member Deferencing Operators, Memory Management Operators, Manipulators, Type Cast Operators, Expressions and their Types, Special Assignment Expressions, Implicit Conversions, Operator Overloading, Operator Precedence, Control Structures.

UNIT-II
Functions in C++: The Main Function, Function Prototyping, Call By Reference, Return by Reference, Inline Functions, Default Arguments, Const. Arguments, Function Overloading, Friend & Virtual Functions, Math. Library Functions. Classes and Objects: Specifying a Class, Defining Member Functions, Making an outside Function Inline, Nested Member Functions, Private Member Functions, Arrays within a Class, Memory Allocation for Objects, Static Data Members, Static Member Functions, Arrays of Objects, Objects as Function Arguments, Friendly Functions, Returning Objects, Cons. Member Functions, Pointer to Members, Local Classes.

UNIT-III

UNIT-IV
Inheritance: Defining Derived Classes, Single Inheritance, Making a Private Member Inheritance, Multilevel Inheritance, Multiple Inheritance, Hierarchical Inheritance, Hybrid Inheritance, Virtual Base Classes, Abstract Classes, Constructors in Derived Classes, Member Classes, Nesting of Classes. Pointers, Virtual Functions and Polymorphism: Pointers, Pointers to Objects, this Pointer, Pointers to Derived Classes, Virtual Functions, Pure Virtual Functions.

UNIT-V

Recommended Books:
1. E. Balgurusamy, Object Oriented Programming with C++, 4/e (TMH).
2. Paul Deitel, Harvey Deitel, ”C++: How to Program”, 9/e. Prentice Hall.
UNIT-I

UNIT-II

UNIT-III

UNITIV
Queues: Definition, Representation of Queues (Array, Linked List), Circular Queue, Deque, Priority Queue, Application of Queues (Simulation, CPU Scheduling in Multiprogramming Environment, Round Robin Algorithm).

UNITV
Tree: Binary Trees, Properties of Binary Tree, Linear Representation of Binary a Binary Tree, Linked Representation of a Binary Tree, Physical Implementation of Binary Tree in Memory, Operations on Binary Tree (Insertion, Deletion, Traversal, Merging of two Binary Trees), Types of Binary Trees (Expression Tree, Binary Search Tree, Heap Tree, Threaded Binary Trees, Height Balanced Binary Tree, Weighted Binary Tree, Decision Trees).

Recommended Books:
1. D. Samanta, Classic Data Structures, 2/e (PHI).

GE:2-STATISTICS FOR BUSINESS
(Credit:6, Theory:4, Practical: 2)

UNIT-I

UNIT-II

UNIT-III
Sampling Distribution: sampling plans and experimental designs, Sampling distribution of a statistic,
Central Limit theorem, Sampling distribution of the Sample mean and Proportion. Large Sample Estimation: Point estimation, Interval estimation, Confidence interval of population mean, Population proportion, difference between two population means, difference between two population proportions.

UNIT-IV
Large Sample Tests of Hypothesis: Test of a Population mean, Test of difference of two population means, Test of hypothesis for a binomial proportion, Test of hypothesis for the difference between two binomial proportions. Inference from Small Samples: Students t Distribution, Small Sample inferences concerning a population mean and difference between two population means, Inferences concerning a population variance and difference between two population variances.

UNIT-V

Recommended Books:
1. William Mendenhall, Robert J. Beaver, Barbara M. Beaver, Probability and Statistics 14/e, CENGAGE Learning.

SEMESTER-III

C: 6-OPERATING SYSTEMS
(Credit:6, Theory:4, Practical: 2)

UNIT-I

UNIT-II

UNIT-III
UNIT-IV

UNIT-V

Recommended Books:

C: 7-BUSINESS ACCOUNTING
(Credit:6, Theory:4, Practical: 2)

UNIT-I

UNIT-II

UNIT-III

UNIT-IV
Creditors; Profitability Ratios, Solvency Ratios, Liquidity Ratios, and Turnover Ratios; Limitations of Ratio Analysis.

Recommended Books:

C: 8-MANAGERIAL ECONOMICS
(Credit:6, Theory:4, Practical: 2)

UNIT-I
Demand, Supply and Market equilibrium: individual demand, market demand, individual supply, market supply, market equilibrium; Elasticities of demand and supply : Price elasticity of demand, income elasticity of demand, cross price elasticity of demand, elasticity of supply; Theory of consumer behavior : cardinal utility theory, ordinal utility theory(indifference curves, budget line, consumer choice, price effect, substitution effect, income effect for normal, inferior and giffen goods), revealed preference theory.

UNIT-II
Producer and optimal production choice : optimizing behavior in short run(geometry of product curves, law of diminishing margin productivity, three stages of production), optimizing behavior in long run (isoquants, isocost line, optimal combination of resources) Costs and scale : traditional theory of cost (short run and long run, geometry of cot curves, envelope curves), modern theory of cost (short run and long run), economies of scale, economies of scope.

UNIT-III
Theory of firm and market organization : perfect competition (basic features, short run equilibrium of firm/industry, long run equilibrium of firm/industry, effect of changes in demand, cost and imposition of taxes) ; monopoly (basic features, short run equilibrium, long run equilibrium, effect of changes in demand, cost and imposition of taxes, comparison with perfect competition, welfare cost of monopoly), price discrimination, multiplant monopoly ; monopolistic competition (basic features, demand and cost, short run equilibrium, long run equilibrium, excess capacity) ; oligopoly (Cournots model, kinked demand curve model, dominant price leadership model, prisoners dilemma)

UNIT-IV
Factor market : demand for a factor by a firm under marginal productivity theory (perfect competition in the product market, monopoly in the product market), market demand for a factor, supply of labour, market supply of labour, factor market equilibrium.

Recommended Books:
UNIT-I

UNIT-II

UNIT-III
Numerical Integration: Trapezoidal Rule, Composite Trapezoidal rule, Simpsons 1/3 rule, Simpsons 3/8 rule, Gaussian Quadrature formulae (1-point, 2-point, 3-point)

UNIT-IV

UNIT-V

Recommended Books:
1. E. Ward Cheney and David R. Kincaid, Numerical Methods and Applications CENGAGE Learning India Private Ltd., New Delhi.
3. S.S. Sastry, Introductory Methods of Numerical Analysis, 5/e, EEE

SEMESTER-IV
C: 9-JAVA PROGRAMMING
(Credit:6, Theory:4, Practical: 2)

UNIT-I
Introduction to Java: Java Architecture and Features, Understanding the semantic and syntax
differences between C++ and Java, Compiling and Executing a Java Program, Variables, Constants, Keywords Data Types, Operators (Arithmetic, Logical and Bitwise) and Expressions, Comments, Doing Basic Program Output, Decision Making Constructs (conditional statements and loops) and Nesting, Java Methods (Defining, Scope, Passing and Returning Arguments, Type Conversion and Type and Checking, Built-in Java Class Methods).

UNIT-II

UNIT-III
Inheritance, Interfaces, Packages, Enumerations, Autoboxing and Metadata: Inheritance: (Single Level and Multilevel, Method Overriding, Dynamic Method Dispatch, Abstract Classes), Interfaces and Packages, Extending interfaces and packages, Package and Class Visibility, Using Standard Java Packages (util, lang, io, net), Wrapper Classes, Autoboxing/Unboxing, Enumerations and Metadata.

UNIT-IV
Exception Handling, Threading, Networking and Database Connectivity: Exception types, uncaught exceptions, throw, built-in exceptions, Creating your own exceptions; Multi-threading: The Thread class and Runnable interface, creating single and multiple threads, Thread prioritization, synchronization and communication, suspending/resuming threads. Using java.net package, Overview of TCP/IP and Datagram programming. Accessing and manipulating databases using JDBC.

UNIT-V
Applets and Event Handling: Java Applets: Introduction to Applets, Writing Java Applets, Working with Graphics, Incorporating Images & Sounds. Event Handling Mechanisms, Listener Interfaces, Adapter and Inner Classes. The design and Implementation of GUIs using the AWT controls, Swing components of Java Foundation Classes such as labels, buttons, text fields, layout managers, menus, events and listeners; Graphic objects for drawing figures such as lines, rectangles, ovals, using different fonts. Overview of servlets.

Recommended Books:
1. E. Balagurusamy, Programming with Java, 4/e, TMH
4. Cay S. Horstmann, Gary Cornell, ”Core Java 2 Volume 1 ,9/e, Printice Hall.2012.

C: 10-DATABASE MANAGEMENT SYSTEM
(Credit:6, Theory:4, Practical: 2)

UNIT-I
Databases and Database Users, Database System Concepts and Architecture, Data Modelling using
UNIT-II
Relational Model: The Relational Data Model and Relational Database Constraints, The Relational Algebra and Relational Calculus.

UNIT-III

UNIT-IV
Functional Dependencies and Normalization for Relational Databases, Relational Database Algorithms and Further Dependencies, Practical Database Design Methodology and use of UML Diagrams.

UNIT-V

Recommended Books:

C: 11-MANAGEMENT ACCOUNTING
(Credit: 6, Theory: 4, Practical: 2)

UNIT-I

UNIT-II
Cost-Volume-Profit Analysis: Contribution, Profit-Volume Ratio, Margin of safety, Cost Break-even Point, Composite Break-even Point, Cash Break-even Point, Key Factor, Break-even Analysis. Relevant Costs and Decision Making: Pricing, Product Profitability, Make or Buy, Exploring new markets, Export Order, Sell or Process Further, Shut down vs. Continue.

UNIT-III
Budgets and Budgetary Control: Meaning, Types of Budgets, Steps in Budgetary Control, Fixed and Flexible Budgeting, Cash Budget. Responsibility Accounting: Concept, Significance, Different
UNIT-IV

Recommended Books:

SEC: 2-HTML PROGRAMMING
(Credit:2))

UNIT-I
Introduction
The Basics: The Head, the Body, Colors, Attributes, Lists, ordered and unordered.

UNIT-II
Links: Introduction, Relative Links, Absolute Links, Link Attributes, Using the ID Attribute to Link within a Document.

UNIT-III
Images: Putting an Image on a Page, Using Images as Links, Putting an Image in the Background

UNIT-IV
Tables, Creating a Table, Table Headers, Captions, Spanning Multiple Columns, Styling Table

UNIT-V
Forms: Basic Input and Attributes, Other Kinds of Inputs, Styling forms with CSS, Where To Go From Here

Recommended Books:
Introduction to HTML and CSS -O’ Reilly.

GE:4-QUANTITATIVE TECHNIQUES
(Credit:6, Theory:4, Practical: 2)

UNIT-I
Linear Programming: Formulation of L.P. Problems, Graphical Solutions (Special cases: Multiple optimal solution, infeasibility, unbounded solution); Simplex Methods(Special cases: Multiple optimal solution, infeasibility, degeneracy, unbounded solution)Big-M method and Two-phase method; Duality and Sensitivity (emphasis on formulation & economic interpretation); Formulation of Integer programming, Zero-one programming, Goal Programming.
UNIT-II
Elementary Transportation: Formulation of Transport Problem, Solution by N.W. Corner Rule, Least Cost method, Vogels Approximation Method (VAM), Modified Distribution Method. (Special cases: Multiple Solutions, Maximization case, Unbalanced case, prohibited routes) Elementary Assignment: Hungarian Method, (Special cases: Multiple Solutions, Maximization case, Unbalanced case, Restrictions on assignment).

UNIT-III
Network Analysis: Construction of the Network diagram, Critical Path- float and slack analysis (Total float, free float, independent float), PERT, Project TimeCrashing.

UNIT-IV
Decision Theory: Pay off Table, Opportunity Loss Table, Expected Monetary Value, Expected Opportunity Loss, Expected Value of Perfect Information and Sample Information.

UNIT-V
Markov Chains: Predicting Future Market Shares, Equilibrium Conditions (Questions based on Markov analysis) Limiting probabilities, Chapman Kolmogrov equation. Introduction to Game Theory: Pay off Matrix- Two person Zero-Sum game, Pure strategy, Saddle point; Dominance Rule, Mixed strategy, Reduction of $m \times n$ game and solution of 2×2, $2 \times s$, and $r \times 2$ cases by Graphical and Algebraic methods; Introduction to Simulation: Monte Carlo Simulation.

Recommended Books:
SEMESTER-V

C: 12-DATA COMMUNICATIONS
(Credit:6, Theory:4, Practical: 2)

UNIT-I

UNIT-II

UNIT-III

UNIT-IV

Recommended Books:
2. A. S. Tanenbaum, & David J. Wetherall, Computer Networks, 5/e, Pearson

C: 13-SOFTWARE ENGINEERING
(Credit:6, Theory:4, Practical: 2)

UNIT-I
UNIT-II

UNIT-III

UNIT-IV

UNIT-V

Recommended Books:
1. I. Sommerville, Software Engineering, 9/e, Addison Wesley.
2. R. Mall, Fundamentals of Software Engineering, 3/e, PHI.

DSE: 1-PROGRAMMING IN VISUAL BASIC
(Credit:6, Theory:4, Practical: 2)

UNIT-I
GUI Environment: Introduction to graphical user interface (GUI), programming language (procedural, object oriented, event driven), the GUI environment, compiling, debugging, and running the programs. Controls: Introduction to controls textboxes, frames, check boxes, option buttons, images, setting borders and styles, the shape control, the line control, working with multiple controls and their properties, designing the user interface, keyboard access, tab controls, default & cancel property, coding for controls.

UNIT-II
Operations: Data types, constants, named & intrinsic, declaring variables, scope of variables, val function, arithmetic operations, formatting data. Decision Making: If statement, comparing strings, compound conditions (and, or, not), nested if statements, case structure, using if statements with
option buttons & check boxes, displaying message in message box, testing whether input is valid or not.

UNIT-III
Modular programming: Menus, sub-procedures and sub-functions defining / creating and modifying a menu, using common dialog box, creating a new sub-procedure, passing variables to procedures, passing argument by value or by reference, writing a function/ procedure. Forms Handling : Multiple forms creating, adding, removing forms in project, hide, show method, load, unload statement, me keyword, referring to objects on a different forms.

UNIT-IV
Iteration Handling: Do/loops, for/next loops, using msgbox function, using string function Arrays and Grouped Data Control: Arrays - 1-dimension arrays, initializing an array using for each, user-defined data types, accessing information with user-defined data types, using list boxes with array, two dimensional arrays. lists, loops and printing list boxes & combo boxes, filling the list using property window/additem method, clear method, list box properties, removing an item from a list, list box/ combo box operations.

UNIT-V
Database Connectivity: Database connectivity of forms with back end tool like mysql, populating the data in text boxes, list boxes etc. searching of data in database. using forms. Updating/ editing of data based on a criterion.

Recommended Books:

DSE: 2-FINANCIAL MANAGEMENT
(Credit:6, Theory:4, Practical: 2)

UNIT-I
Nature of Financial Management: Finance and related disciplines; Scope of Financial Management; Profit Maximization, Wealth Maximization - Traditional and Modern Approach; Functions of finance Finance Decision, Investment Decision, Dividend Decision; Objectives of Financial Management; Organisation of finance function; Concept of Time Value of Money, present value, future value, and annuity; Risk & Return: Historical return, expected return, absolute return, holding period return, annualized return, arithmetic & geometric return; Risk - Systematic & unsystematic risk their sources and measures.

UNIT-II
Long -term investment decisions: Capital Budgeting - Principles and Techniques; Nature and meaning of capital budgeting; Estimation of relevant cash flows and terminal value; Evaluation techniques - Accounting Rate of Return, Net Present Value, Internal Rate of Return & MIRR, Net Terminal Value, Profitably Index Method. Concept and Measurement of Cost of Capital: Explicit and Implicit costs; Measurement of cost of capital; Cost of debt; Cost of perpetual debt; Cost of Equity Share; Cost of Preference Share; Cost of Retained Earning; Computation of over-all cost of capital based on Historical and Market weights.

UNIT-III

Dividend Policy Decision - Dividend and Capital; The irrelevance of dividends: General, MM hypothesis; Relevance of dividends: Walter’s model, Gordon’s model; Leverage Analysis: Operating and Financial Leverage; EBIT -EPS analysis; Combined leverage.

UNIT-IV

Working Capital Management: Management of Cash - Preparation of Cash Budgets (Receipts and Payment Method only); Cash management technique, Receivables Management Objectives; Credit Policy, Cash Discount, Debtors.
Outstanding and Ageing Analysis; Costs - Collection Cost, Capital Cost, Default Cost, Delinquency Cost, Inventory Management (Very Briefly) - ABC Analysis; Minimum Level; Maximum Level; Reorder Level; Safety Stock; EOQ, Determination of Working Capital.

Recommended Books:

SEMESTER-VI

C: 14-INTERNET TECHNOLOGY
(Credit:6, Theory:4, Practical: 2)

UNIT-I

UNIT-I
Java: Use of Objects, Array and ArrayList class.

UNIT-II
JavaScript: Data types, operators, functions, control structures, events and event handling.

UNIT-III

UNIT-IV
JSP: Introduction to Java Server Pages, HTTP and Servlet Basics, The Problem with Servlets, The Anatomy of a JSP Page, JSP Processing, JSP Application Design with MVC, Setting Up the JSP Environment, Implicit JSP Objects, Conditional Processing, Displaying Values, Using an expression to Set an Attribute, Declaring Variables and Methods, Error Handling and Debugging, Sharing Data Between JSP Pages, Requests, and Users, Database Access.

UNIT-V
Java Beans: Java Beans Fundamentals, JAR files, Introspection, Developing a simple Bean, Connecting to DB.
Recommended Books:

C: 15-PROGRAMMING IN NET
(Credit:6, Theory:4, Practical: 2)

DSE: 3-E-COMMERCE
(Credit:6, Theory:4, Practical: 2)

UNIT-I

UNIT-II
The Internet and WWW: Evolution of Internet, Domain Names and Internet Organization (.edu, .com, .mil, .gov, .net etc.), Types of Network, Internet Service Provider, World Wide Web, Internet & Extranet, Role of Internet in B2B Application, building own Website, Cost, Time, Reach, Registering a Domain Name, Web promotion, Target email, Banner, Exchange, Shopping Bots.

UNIT-III

UNIT-IV

UNIT-V

Recommended Books:
2. E-Commerce:-Kamlesh K Bajaj and Debjani Nag.
3. Electronic commerce-Gray P. Schneider.
DSE: 4-PROJECT WORK

(Credit:6)
SEMESTER-I

C:1-GEOMORPHOLOGY
(Credits:6, Theory-4, Practical-2)
Lectures: 60 (Theory:40, Practical:20)
Max. Marks:100(Theory:70, Practical:30)

UNIT-I
(a) Nature, objective and relevance of Geomorphology.
(b) Geological time scale.
(c) Internal structure of the earth evidences & zoning.

UNIT-II
(a) Constituents of earth surface- rock forming minerals & rocks.
(b) Origin of continents and ocean basin.
(c) Tetrahedral Hypothesis

UNIT-III
(a) Forces affecting earth crust
(b) Orogenic & Epeorogenic earth movementsfold, fault.
(c) Earthquake & its world distribution.

UNIT-IV
(a) Volcanoes and volcanic land forms.
(b) Geomorphic processes weathering and mass wasting
(c) Soil forming processes & major soil groups of the world.

UNIT-V: Evolution of land form Erosional & Depositional
(a) Fluvial.
(b) Karst & Aeolian.
(c) Glacial & coastal.
PRACTICAL

Study of symbols and techniques of representation of relief features and Geomorphic Interpretation of topographic Maps.

2. Drawing of Serial, superimposed, composite and projected profiles.
3. Drawing long profile and cross profile of a river.
4. Study of drainage pattern; dendritic, trellised, radial using stream order and bifurcation ratio.
6. Use of Rotameter and planimeter and graphic methods in measurement of area and length from maps.

C:2-ECONOMIC GEOGRAPHY
(Credits:6, Theory-4, Practical-2)
Lectures: 60 (Theory:40, Practical:20)
Max. Marks:100(Theory:70, Practical:30)

UNIT-I
(a) Meaning & concept of economic Geography.
(b) Concept of Resource, Resource classification and resource conservation policy.
(c) Types of human activities primary secondary & tertiary.

UNIT-II
(a) Types & Problems of Agriculture.
(b) Von Thunens theory of Agriculture.
(c) Tea plantation in Srilanka.

UNIT-III: World Distribution & mode of occurrence
(a) Mineral resource Iron ore and bauxite.
(b) Energy Resource coal, petroleum & nuclear.
(c) Conventional energy resource Hydel Power & solar energy.

UNIT-IV
(a) Factor affecting location of industry.
(b) Industrial location theory by Weber.
(c) World distribution of Iron & steel Industry.

UNIT-V

(a) Major industrial regions of the world.
(b) Ship building Industry in Japan.
(c) Utility of transport in trade & services, break point theory of trade.

PRACTICAL

Representation of economic data through following diagrams

(a) Simple and compound bars.
(b) Simple and divided Pie/Wheel diagrams.
(c) Uniform and proportional circles.
(d) Block and Sphere Diagrams.
(e) Depiction of data through Choroplethand Isopleths diagrams.

1. Preparation of Maps to show distribution and production of Minerals, goods and resources
2. Preparation of Maps to show distribution of Crops in Odisha: Rice, Sugarcane
3. Line graphs, Time series Graphs

SEMESTER-II

C:3-CLIMATOLOGY
(Credits:6, Theory-4, Practical-2)
Lectures: 60 (Theory:40, Practical:20)
Max. Marks:100(Theory:70, Practical:30)

UNIT-I

(a) Atmospheric structure & composition.
(b) Factors affecting weather & climate.
(c) Insolation, global energy budget, vertical & horizontal distribution of temperature.

UNIT-II

(a) Atmospheric pressure belts of the earth.
(b) Planetary wind system.
(c) Periodical & local wind system.
UNIT-III: Atmospheric moisture

(a) Humidity, evaporation, condensation.
(b) Types of clouds and fog.
(c) Types of precipitation & world pattern of rain fail.

UNIT-IV

(a) Air mass, concept classification & properties.
(b) Atmospheric disturbance tropical cyclones & extra tropical cyclones.
(c) Origin & mechanism of Indian monsoon.

UNIT-V

(a) Koppens climatic classification.
(b) Thornthwaits climatic classification.
(c) Atmospheric pollution & Global warming.

PRACTICAL

1. Use and interpretation of weather Maps.
2. Use of symbols of various weather parameters in Indian weather maps.
3. Interpretation of Weather map for understanding weather conditions.
4. Distribution of temperature/ pressure/ humidity on maps by isopleth techniques.
5. Distribution of rainfall on maps by choropleth/ Isopleth techniques
6. Distribution of monthly variation of temperature/ rainfall on maps by bars and graphs.
7. Graphical methods of presentation of Temperature, rainfall, Humidity.
11. Practical record and viva.
C:4- HYDROLOGY & OCEANOGRAPHY
(Credits:6, Theory-4, Practical-2)
Lectures: 60 (Theory:40, Practical:20)
Max. Marks:100(Theory:70, Practical:30)

UNIT-I
(a) Hydrological cycle & global water balance.
(b) Characteristics of river basin, drainage pattern, river discharge.
(c) Hydrological input output precipitation, evaporation, evapotranspiration, infiltration, ground water, surface run off & over flow.

UNIT-II
(a) Surface configuration of ocean floor continental shelf, continental slope, abysal plain, mid oceanic ridges, oceanic trench.
(b) Relief of Atlantic, Indian & Pacific ocean.

UNIT-III
(a) Ocean water salinity and temperature distribution & determinants.
(b) Oceanic movements wave, currents & tides.
(c) Circulation of Atlantic, Indian & Pacific ocean.

UNIT-IV
(a) Coral reef & atolls.
(b) Theories of origin of coral reef & atolls.
(c) Marine deposits and its Classification.

UNIT-V
(a) Costal environment.
(b) Sea is store house of resources.
(c) Costal immurgence & submergence.

PRACTICAL

Statistical Techniques.
1. Exercises on mean deviation and standard deviation for both un-group data and group data.
2. Exercise on co-efficient of variability.
3. Correlation product movement correlation and sphere mans rank correlation.

4. Regression analysis.
 Drawing of scatter grams & regression line (i.e., y on x and x on y.)

5. Practical record & viva.

SEMESTER-III

C:5-ENVIRONMENT & ECO SYSTEM

(Credits:6, Theory-4, Practical-2)
Lectures: 60 (Theory:40, Practical:20)
Max. Marks:100 (Theory:70, Practical:30)

UNIT-I

(a) Meaning and concept of environment.

(b) Environment changes- short term, medium term, long term.

(c) Environmental tolerance-light, temperature, water & wind.

UNIT-II: Major environmental zones

(a) Forestedequatorial, boreal, coniferous.

(b) Intermediatesavanna & steppes & tundra.

(c) Barren-arid, tundra & polar.

UNIT-III: Structure & function

(a) Concept of ecology & ecosystem.

(b) Energy conversion & photosynthesis, food chain, food web, energy flow.

(c) Mans place in ecosystem.

UNIT-IV: Environmental cycle & environment protection act

(a) Nutrient cycle-phosphorous cycle.

(b) Gaseous cycle-Nitrogen & carbon cycle.

(c) Environmental protection acts

UNIT-V: Waste & pollution

(a) Solid waste & its management.

(b) Water pollution & air pollution.
(c) Global ecological imbalance.
(d) Global warming & green house effects.

PRACTICAL

Environmental Geography

1. Calculation of PE, TE & Evaporation Rates based on Thornthwaite method.
2. Water Surplus and deficit diagrams.
3. Graphical and Spatial presentation of different environmental / pollution parameters.
5. Use of various weather instruments- Thermometer, Torricelli and Aneroid Barometer, Wind Vane, Hygrometer, Anemometer, Dry Bulb- Wet bulb thermometer.
6. Practical record & viva.

C:6- APPLIED GEOMORPHOLOGY
(Credits:6, Theory-4, Practical-2)
Lectures: 60 (Theory:40, Practical:20)
Max. Marks:100 (Theory:70, Practical:30)

UNIT-I

(a) Continental drift theory of Wegener.
(b) Concept of Isostacy Airy & pratt.
(c) Drift & orogensis.

UNIT-II

(a) Plate tectonic.
(b) Paleomagnetism.
(c) Sea floorspreading.

UNIT-III: Mountain building theory by

(a) Kober.
(b) Holmes.
(c) Joly.

UNIT-IV: Cycle of erosion
(a) Concept of W. M. Davis.
(b) Concept of Penk.
(c) Interpretation of cycle erosion.

UNIT-V
(a) Applied Geomorphology.
(b) Geomorphic Hazards.
(c) Assessment and management of Geomorphic Hazards.

PRACTICAL
1. Identification and characterization of common rocks and rock forming minerals, Ores.
 (a) Sandstone, slate, shale, limestone, Breccia, granite, Basalt, Khondalite, Gneiss, Schist, Marble.
 (b) Quartzite, Calcite, Bauxite, Haematite, Chromite.

2. Understanding of Dip, Strike, bedding plain, unconformity, disconformity, outcrop, geological structure (Fold & Fault), dyke, sills, geological history and stratigraphic succession.

3. Geomorphological interpretation of an area from toposheet.

4. Determination of Slope and Relative Relief (Wentworth & Smith).

5. Interpretation of Geological Maps.

6. Practical record & viva.

C:7-REGIONAL GEOGRAPHY OF INDIA
(Credits:6, Theory-4, Practical-2)
Lectures: 60 (Theory:40, Practical:20)
Max. Marks:100 (Theory:70, Practical:30)

UNIT-I: Physical Aspects
(a) Physiographic division of India.
(b) Drainage, Climate, Soil & Vegetation.

UNIT-II: Economic Aspects
(a) Types of Characteristic of Indian Agriculture, production and distribution of Major crops- Rice, Wheat & Sugar Cane.
(b) Production and distribution of Mineral Resource Iron ore, Bauxite & Coal.
(c) Production and distribution Iron & Steel Industry, fertilizer Industry, information & technology.

UNIT-III: Population & Settlement

(b) Caste, Religion, Language, Tribes and their correlates.

(c) Settlement- Rural & Urban.

UNIT-IV: Selected Natural regions of India

(a) Ganga Plain.

(b) Chhotnagpur Plateau.

(c) Odisha Coastal Plain.

UNIT-V: Transport & Trade of India

(a) Road transport.

(b) Rail transport.

(c) Water Transport.

PRACTICAL

Concept of Spheroid and Geoid: Coordinate and grid reference system

1. Location of place on grid reference system using 8 digit, 12 digit and 16 digit system.

2. Drawing of:

 (a) Simple Cylindrical Projection.

 (b) Cylindrical Equal Area.

 (c) Simple conical projection with one and Two standard parallel.

 (d) Bonnes Projection.

 (e) Polyconic projection.

 (f) Stereographic Projection.

 (g) Mercators Projection.

 (h) Practical record & viva.
SEMESTER-IV

C:8-REGIONAL PLANNING OF DEVELOPMENT
(Credits:6, Theory-4, Practical-2)
Lectures: 60 (Theory:40, Practical:20)
Max. Marks:100 (Theory:70, Practical:30)

UNIT-I
(a) Definition of region, Evolution & types of regional planning.
(b) Types of Region- formal & functional, Uniform & nodal, Single purpose & composite purpose.
(c) Hierarchy & region.

UNIT-II
(a) Delineation of Planning region.
(b) Utility of regions & regional planning.
(c) Multi level planning & planning problem.

UNIT-III: Choice of region for regional planning
(a) Physical region.
(b) River valley region.
(c) Metropolitan or city region.

UNIT-IV: Economic Base & regional multiplier
(a) Concept of Growth included models & growth pole theory.
(b) Measurement of level of development.
(c) Regional disparities In India.

UNIT-V
(a) World policy for urbanization.
(b) Metropolitan planning and vision planning in India.
(c) Integrated rural development planning.

PRACTICAL
1. Mapping Regional / spatial variation of developmental parameters(Choropleath Method).
2. Calculation of levels of Regional development by scores/ranks/weightages

4. Practical record & viva.

C:9-SETTLEMENT AND POPULATION GEOGRAPHY
(Credits: 6, Theory-4, Practical-2)
Lectures: 60 (Theory:40, Practical:20)
Max. Marks:100 (Theory:70, Practical:30)

UNIT-I: Settlement Geography
(a) Meaning nature & Scope of Settlement Geography.
(b) Factors controlling growth and development of settlement.
(c) Types of Settlement Internal morphology of Rural Settlement, Functional Classification of Settlement.

UNIT-II
(a) Evaluation of Settlement Central place theory of Christaler.
(b) Trends of urbanisation in India.
(c) Settlement and Environment Relationship.
(d) Concept of urban settlement Urban hierarchy, Run-Urban-Tension, Hinterland, Umland, Conurbation and Satellite town.

UNIT-III
(a) Scope, objective and nature of Population Geography.
(b) Source of population data.
(c) Problems of population mapping.

UNIT-IV
(a) Population distribution and growth Determinants and patterns in the world.
(b) Population composition Over population, Under population, density, age and sex, Castes and Tribes.
(c) Population dynamics Measurement of fertility, mortality and migration.

UNIT-V
(a) Population and resource relationship.
(b) Human development
Index and its Components.

(c) Population theory
Malthusian and Neo Malthusian.

PRACTICAL

1. Study of different settlement patterns from toposheets Random, Cluster, systematic.

2. Nearest Neighbour Analysis of settlement pattern.

4. Population Pyramid for Odisha/ India/ other geographical units.

6. Practical record & viva.

C:10-REGIONAL GEOGRAPHY OF ODISHA
(Credits:6, Theory-4, Practical-2)
Lectures: 60 (Theory:40, Practical:20)
Max. Marks:100 (Theory:70, Practical:30)

UNIT-I

(a) Geographical evolution and structural division of Odisha.

(b) Physiography of Odisha.

(c) Drainage and Climate.

(d) Soil and natural vegetation of Odisha.

UNIT-II

(a) Types and Characteristics Agriculture of Odisha.

(b) Rice, Pulses and Commercial Crops of Odisha.

(c) Irrigation Projects of Odisha.

UNIT-III: Economic Base

(a) Mineral resource Iron Ore, Bauxite.
 Power resource Coal and Hydel Power.

(b) Industries:
 Iron and steel Industries.
 Aluminium Industries.
Cotton textile Industries.
Cement Industries.

UNIT-IV
(a) Population distribution and density.
(b) Trends of Population growth in Odisha.
(c) Road and Rail transport.

UNIT-V: Ecological Regions
(a) Northern Plateau.
(b) The Easternghat Zone.
(c) Central table Land.

PRACTICAL
1. Exercises on mean deviation and standard deviation for both un-group data and group data.
2. Exercise on co-efficient of variability.
3. Correlation product movement correlation and sphere mans rank correlation.
4. Regression analysis.
5. Drawing of scatter grams & regression line i.e. y on x and x on y.
6. Practical record & viva.

SEMESTER-V
C:11-ADVANCED CARTOGRAPHY
(Credits:6, Theory-4, Practical-2)
Lectures: 60 (Theory:40, Practical:20)
Max. Marks:100(Theory:70, Practical:30)

UNIT-I
(a) Nature, Scope and Status of Cartography.
(b) Development of Cartographic techniques in recent period with changing technology.
(c) Geodesy Mapping Science.

UNIT-II
(a) Maps Their needs and characteristic, and types.
(b) Geographical Co-ordinates Latitude-authalic, geodetic and Longitude.

(c) Co-ordinates Cartesian Co-ordinates - X and Y axis.

(d) Rectangular Co-ordinate- Easting and Northing.

UNIT-III: Map Projection

(a) Scale factors, transformation of angles, area and direction.

(b) Types of Map projection Cylindrical, Conical, Zenithal, conformal, Equal Area.

(c) Principles of Surveying Horizontal Survey Traversing, Triangulation, Trilateration. Vertical Survey- Height and Level.

(d) Techniques of analysis of Socio economic data.

UNIT-IV: Remote Sensing

(a) Concept of Remote Sensing.

(b) Source of energy in remote sensing Radiant energy, electromagnetic radiation.

(c) Aerial Photography and satellite remote sensing.

UNIT-V

(a) Utility of GIS to Cartography.

(b) Geo-Referencing and image rectification, Raster, and vector data structure.

(c) Application of GIS in Land use mapping.

PRACTICAL

1. Scale- Graphical construction of plain scale, diagonal scale, comparative scale.

2. Earth shape, size, area.

3. Latitude definition & determination of latitude from pole star & sun.

 Longitude-Definition & determination of longitude with the help of Sun.

5. Geographical data representation through colour, shading, layer and tint method.

6. Network system of road and river.

7. Drawing of thematic, complex thematic and chorochromatic maps.

8. Thematic map interpretation.

C:12-HUMAN GEOGRAPHY
(Credits:6, Theory-4, Practical-2)
Lectures: 60 (Theory:40, Practical:20)
Max. Marks:100 (Theory:70, Practical:30)

UNIT-I: Cultural Geography
(a) Cultural evolution of man.
(b) Emergence of man & Races of mankind.
(c) Major cultural realms of the world.
(d) Cultural elements and their changes in recent times.

UNIT-II: Political Geography
(a) Concepts, nature & scope of political geography.
(b) Concept of nation, state, frontiers, boundaries.
(c) Heart land theory, Rim land theory & Buffer zones.

UNIT-III
(a) Geopolitics of Middle East.
(b) Geopolitics of South Asia.
(c) Geopolitics of Indian Ocean.

UNIT-IV: Electoral Geography & resource conflict
(a) Geography of voting.
(b) Geographic influence on voting pattern.
(c) Water sharing disputes, conflicts related to forest & minerals.

UNIT-V: Environmental emerging issues
(a) Population explosion & food problem.
(b) Deforestation & environmental hazards.
(c) Global warming.
(d) Biodiversities.
1. Continuity & smoothness of data.
2. Probability & normal curve.
3. Histogram, frequency curve & frequency polygon.
4. Measures of central tendency mean, median, mode for group & un group data.
 Determination of median & quartiles from cumulative frequency curve & ogive.
5. Proportionate symbols dots, circle and sphere.
6. Segmented bar and wheel diagram.

SEMESTER-VI

C:13- EVOLUTION OF GEOGRAPHICAL THOUGHTS
(Credits:6, Theory-4, Practical-2)
Lectures: 60 (Theory:40, Practical:20)
Max. Marks:100 (Theory:70, Practical:30)

UNIT-I: Debates on geographical thought
(a) Environmental determination.
(b) Possibilism.
(c) Neo- determinism.
(d) Systematic and regional.

UNIT-II
(a) Pre historical ideas in geography.
(b) Ancient Indian Geographical concept.
(c) Impact of Exploration & discoveries and scientific invention on geography.

UNIT-III: Modern themes in Geographical thought
(a) Behaviouralism.
(b) Humanism.
(c) Radicalism.
UNIT-IV
(a) Contribution of Modern Geographers-
Alexander von Humboldt
Carl ritter
(b) School of Geographical thought-
Fedric ratzel
Vidal de lablache
Taylor

UNIT-V: Models in Geography
(a) Meaning & need of models in Geography.
(b) Classification of models in Geography.
(c) Dichotomy in Geography.

PRACTICAL
1. Plane table survey radiation, intersection, resection method.
2. Prismatic compass survey close traverse & open traverse.
3. Dumpy level survey contouring & levelling.
4. Theodolite survey non transit triangulation, Transit height determination through accessible, inaccessible method.
5. Practical record & viva.

C:14-DISASTERS MANAGEMENT
(Credits:6, Theory-4, Practical-2)
Lectures: 60 (Theory:40, Practical:20)
Max. Marks:100 (Theory:70, Practical:30)

UNIT-I
(a) Definition & concept of disasters.
(b) Hazards, disasters, risk & vulnerability.
(c) Classification of disasters.

UNIT-II: Disaster in India
(a) Flood - Causes, impact, distribution & mapping.

(b) Cyclone - Causes, impact, distribution & mapping.

(c) Draught - Causes, impact, distribution & mapping.

UNIT-III: Geomorphic hazards in India - causes, impact, mapping

(a) Earthquake.

(b) Tsunami.

(c) Landslide.

UNIT-IV: Man made disaster - causes, impact, distribution & mapping

(a) Fire Hazards.

(b) Chemical Hazards.

(c) Industrial accident.

UNIT-V: Response & mitigation to disaster

(a) Mitigation and preparedness.

(b) Function of NDMA, NIDM & NDRF.

(c) Indigenous community based disaster management.

PRACTICAL

Field Work And Research Methodology

(a) Preparation of:

 (i) Observation Schedule (Participant / Non Participant),
 (ii) Questionnaires (Open/ Closed / Structured / Non-Structured);
 (iii) Guide line for Focused Group Discussions;

(b) Preparation of Questionnaires for Socio-Economic survey

Note:

(i) Each student will prepare an individual report based on primary and secondary data collected during field work.

(ii) The students / teachers can opt to take students in or outside the NCR, depending upon, problem to be studied.

(iii) The duration of the field work should not exceed 10 days.

(iv) The word count of the report should be about 8000 to 12,000 excluding figures, tables, photographs, maps, references and appendices.

(v) One copy of the report on A-4 size paper should be submitted in soft binding.
GENERIC ELECTIVE (GE)

GE:1- GEOGRAPHY OF INDIA
(Credits: 6, Theory-4, Practical-2)
Lectures: 60 (Theory: 40, Practical: 20)
Max. Marks: 100 (Theory: 70, Practical: 30)

UNIT-I: Physical aspects
(a) Location, Physiographic divisions.
(b) Drainage, system The Indus system, The Ganga system, The Brahmaputra system.
(c) Evolution of drainage systems.

UNIT-II: Climate, soil and natural vegetation
(a) The mechanism of Indian Monsoon, The seasons of India.
(b) Soils of India-Classification, Characteristics.
(c) Natural vegetation of India Classification, Characteristics.

UNIT-III: Agriculture, Mineral and power Resources.
(a) Agriculture types, distribution of major crops. (Rice, Wheat, Cotton).
(b) Mineral resources Iron ores, Manganese, Boxcite.
(c) Power resources Coal, Petroleum, Natural gas.

UNIT-IV: Population and Settlement
(a) Distribution, Density and Growth of population in India.
(b) Caste, Religion, Language, Tribes.
(c) Settlement Rural and Urban.

UNIT-V: Industries & Transport
(a) Types and distribution (Iron and steel, Textiles).
(b) Road transports, Rail transport and water transport.

PRACTICAL
Field Work and Research Methodology Concept of Spheroid and Geoid: Coordinate and grid reference system.
(1) Location of place on grid reference system using 8 digit, 12 digit and 16 digit system

(2) Drawing of:
 (i) Simple Cylindrical Projection:
 (ii) Cylindrical Equal Area
 (iii) Simple conical projection with one and Two standard parallel
 (iv) Bonnes Projection
 (v) Polyconic projection
 (vi) Gnomic projection
 (vii) Practical record & viva.

GE:2-DISASTERS MANAGEMENT
(Credits:6, Theory-4, Practical-2)
Lectures: 60 (Theory:40, Practical:20)
Max. Marks:100 (Theory:70, Practical:30)

UNIT-I
(a) Definition & concept of disasters.
(b) Hazards, disasters, risk & vulnerability.
(c) Classification of disasters.

UNIT-II: Disaster in India
(a) Flood Causes, impact, distribution & mapping.
(b) Cyclone - Causes, impact, distribution & mapping.
(c) Draught - Causes, impact, distribution & mapping.

UNIT-III: Geomorphic hazards in India causes, impact, mapping
(a) Earth quake.
(b) Tsunami.
(c) Land slide.

UNIT-IV: Man made disaster causes, impact, distribution & mapping
(a) Fire Hazards.
(b) Chemical Hazards.
(c) Industrial accident.
UNIT-V: Response & mitigation to disaster

(a) Mitigation and preparedness.

(b) Function of NDMA,NIDM & NDRF.

(c) Indigenous community based disaster management.

PRACTICAL

Field Work and Research Methodology

1. Preparation of:
 (i) Observation Schedule (Participant / Non Participant),
 (ii) Questionnaires (Open/ Closed / Structured / Non-Structured);
 (iii) Guideline for Focused Group Discussions;

2. Preparation of Questionnaires for Socio-Economic survey.

Note:

(i) Each student will prepare an individual report based on primary and secondary data collected during field work.

(ii) The students / teachers can opt to take students in or outside the NCR, depending upon, problem to be studied.

(iii) The duration of the field work should not exceed 10 days.

(iv) The word count of the report should be about 8000 to 12,000 excluding figures, tables, photographs, maps, references and appendices.

(v) One copy of the report on A-4 size paper should be submitted in soft binding.

GE:3- ENVIRONMENTAL GEOGRAPHY (OPTIONAL)
(Credits:6, Theory-4, Practical-2)
Lectures: 60 (Theory:40, Practical:20)
Max. Marks:100 (Theory:70, Practical:30)

UNIT-I

(a) Meaning and types of environment.

(b) Environmental changes Long term, Medium and short term.

(c) Environmental tolerance light, temperature, water and wind.

UNIT-II: Major environmental zones

(a) Forested Equatorial, Boreal, Coniferous.
(b) Intermediate Savanna and steppes and tundra.

(c) Barren arid, Tundra and polar.

UNIT-III: Structure and function

(a) Concept of ecology and ecosystem.

(b) Energy conversion and photosynthesis, food web, energy flow.

(c) Mans ace on ecosystem.

UNIT-IV: Environmental cycle and environmental protection act

(a) Nutrient cycle Phosphorous cycle.

(b) Gaseous cycle Nitrogen and carbon cycle.

(c) Environmental protection acts.

UNIT-V: Waste and pollution

(a) Solid waste and its management.

(b) Water pollution and air pollution.

(c) Global ecological imbalance.

(d) Global warming and green house effects.

PRACTICAL

1. Calculation of PE, TE & Evaporation Rates based on Thornthwaite method.

2. Water Surplus and deficit diagrams

3. Graphical and Spatial presentation of different environmental / pollution parameters

4. Biomass estimation of an area / forest patch

5. Use of various weather instruments- Thermometer, Torricelli and Aneroid Barometer, Wind Vane, Hygrometer, Anemometer, Dry Bulb- Wet bulb thermometer.

6. Practical record & viva.

GE:4-NATURAL RESOURCE MANAGEMENT STUDIES

(Credits:6, Theory-4, Practical-2)

Lectures: 60 (Theory:40, Practical:20)

Max. Marks:100 (Theory:70, Practical:30)

UNIT-I
(a) Concepts & types of Resources.
(b) Problems of resource utilization.
(c) Population pressure, development and resource use.

UNIT-II
(a) Use and misuse of resource.
(b) Distribution of resource and global problems.
(c) Types of human occupation, primary, secondary, Tertiary.

UNIT-III
(a) Agriculture types and problems.
(b) Mineral resources distribution of Iron ore and boxcrite.
(c) Power resources distribution of coal and petroleum.

UNIT-IV
(a) Natural hazards and risk management.
(b) Global resource orisis.
(c) Historical and future prospects of various resources like (i) soil (ii) water.

UNIT-V
(a) Resource conservation and conservation policy.
(b) Resource management concepts methods and dimension.
(c) Integrated resource development and its application.

PRACTICAL
1. Depiction of data through Choropleth and Isopleths diagrams.
2. Preparation of Maps to show distribution and production of Minerals, goods and resources.
3. Preparation of Maps to show distribution of Crops in Odisha: Rice, Sugarcane.
5. Practical record and Viva.
DISCIPLINE SPECIFIC ELECTIVE (DSE)

DSE:1-POPULATION GEOGRAPHY

(Credits: 6, Theory-4, Practical-2)
Lectures: 60 (Theory:40, Practical:20)
Max. Marks:100 (Theory:70, Practical:30)

UNIT-I
(a) Scope, objective and nature of population Geography.
(b) Source of population data.
(c) Problems of mapping of population.

UNIT-II
(a) Factors controlling distribution of world population.
(b) Growth of population and their determinants.
(c) Population density and distribution.

UNIT-III
(a) Population composition- Age and sex, Religion and caste.
(b) Population dynamics Measurement of fertility, mortality and migration.
(c) Human development Index and its components.

UNIT-IV
(a) Population and resource relationship.
(b) Population Resource regions.
(c) Population and Enviornment.

UNIT-V: Population theories.
(a) Malthasian theory.
(b) Neo-Malthusian theory.
(c) Demographic transition theory.

PRACTICAL

1. Construction of population pyramids.
3. Drawing of triangular diagram and lorenge curve.
4. Practical record and Viva.

DSE:2-URBAN GEOGRAPHY
(Credits:6, Theory-4, Practical-2)
Lectures: 60 (Theory:40, Practical:20)
Max. Marks:100 (Theory:70, Practical:30)

UNIT-I
Nature and scope, origin and growth of urban settlement.

UNIT-II
(a) Factors affecting growth and distribution of Urban settlement.
(b) Trend of Urbanization.

UNIT-III
(a) Classification of Town.
(b) Concept of the following urban elements.
 (i) Ruralurban fringe.
 (ii) UrbanHierarchy
 (iii) Conurbation.

UNIT-IV
Urban issues Problems of housing, slums, civic amenities (water and transport).

UNIT-V
Case studies of Delhi, Mumbai and Kolkatta with reference to urban issues.

PRACTICAL
Field Work And Research Methodology
1. Exercises on point symbol Uniform and multiple dot.
2. Segmented, wheel and bar diagram.
3. Trafic flow diagram.
4. Practical record and Viva.

DSE:3-REGIONAL DEVELOPMENT
(Credits:6, Theory-4, Practical-2)
Lectures: 60 (Theory:40, Practical:20)
Max. Marks:100(Theory:70, Practical:30)
UNIT-I: Historical development of Regional Planning.
 (a) Meaning, scope and content of Regional planning.
 (b) Regional planning in developed and developing countries.
 (c) Regional planning in India.

UNIT-II
 (a) Definition of Region.
 (b) Types of region formal, functional and planning regions.
 (c) Regional development.
 (d) Methods and techniques of regional planning.

UNIT-III
 (a) Concepts of planning region.
 (b) Methods of delineation of planning region.
 (c) Problems of regional planning.

UNIT-IV
 (a) Regional imbalances in India.
 (b) Regional disparity in India.
 (c) Indicators and methods of study of disparities.

UNIT-V
 (a) Planning for backward regions in India.
 (b) Multi-level planning in India.
 (c) Integrated rural development planning (IRDP).

PRACTICAL

1. Transport network analysis.
2. Nearest neighbor analysis.
3. Determination of service center.
4. Practical Record and Viva.
Project work / Dissertation is considered as a special course involving application of knowledge in solving / analyzing / exploring a real life situation / difficult problems. A project / Dissertation work may be given in lieu of a discipline specific elective paper.
SKILL ENHANCEMENT COURSE (SEC)

SEC:1-REMOTE SENSING (Practical)
(Credits-2: Max. Marks: 50)

UNIT-I
Remote sensing-Definition and development, platforms and types.
UNIT-II
Satellite remote sensing-Principles, EMR interactions with atmosphere and earth surface.
UNIT-III
Image processing-Digital and manual.
UNIT-IV
Satellite image interpretation.
UNIT-V
Application of remote sensing land use and land cover.

Practical record-A project file consisting of 5 exercises by using any method on above mentioned themes.

SEC:2-GEOGRAPHICAL INFORMATION SYSTEM(GIS)-(Practical)
(Credits-2: Max. Marks: 50)

UNIT-I
GIS Definition and components.
UNIT-II
Global positioning system(GPS)-Principles and uses, DGPS.
UNIT-III
GIS Data structures-Types (spatial & non-spatial) Raster and vector data structure.
UNIT-IV
GIS Data analysis-Input, Geo-Referencing, Editing, Output and Query, Overlays.
UNIT-V
Application of GIS-Land use mapping, urban sprawl analysis, Forests monitoring.

Practical Record-A project file consisting of 5 exercises on using any GIS software on above mentioned themes.
UNIT-I: Geomorphology

(a) Nature, objectives, relevance of studies of Geomorphology

(b) Origin of the universe Nebular Hypothesis of kant and Laplace. Tidal Hypothesis of Jean, Jeffery Big-Bang theory.

(c) Geological time scale.

(d) Continental drift theory of wegher, internal structure of the earth.

(e) Organic and Epirogenic Earth movements folds, faults, Earthquakes and volcanoes.

(f) Rocks origin, composition and types.

UNIT-II

(a) Mass wasting weathering (Physical and chemical), Geomorphic agents and process of erosion, transportation and deposition.

(b) The concept of Normal cycle of erosion sydavis.

(c) Land forms produced by the running water, underground water, Glacier, wind and sea-waves.

UNIT-III: Climatology

(a) Composition and structure of the atmosphere.

(b) Atmospheric temperature vertical, horizontal and seasonal distribution.

(c) Atmospheric pressure and winds vertical, horizontal distribution of pressure planetary, periodic and local winds.

(d) Atmospheric moisture Humidity, Hydrological types of rainfall.

(e) Elements and factors of weather and climate.

UNIT-IV

(a) Surface configuration of the ocean floor, continental shelf, continental slope, abyssal plain, and oceanic trenches. Refind of atlantic, pacific and Indian oceans floor.
(b) Distribution of temperature and salinity of ocean water.

(c) Circulation of oceanic water Tides and currents, currents of the atlantic, pacific and Indian oceans.

(d) Marine deposits Types and distribution.

UNIT-V: Soil and Bio-Geography

(a) Soils Constituents , characteristics and profiles, soil forming processes.

(b) Major soil groups of the world.

(c) Concept and structure of Ecosystem.

(d) Energy flow in ecosystem, food chain, food web.

PRACTICAL

1. Types of Data.

 (a) Methods of collection of data.

 (b) Classes of phenomena Positional, linear and Areal data.

 (c) Measurement of phenomena Nominal, ordinal, Interval, Ratio.

 (d) Frequency distribution Histogram and frequency polygon, cumulative frequency curve.

2. Measures of central tendency and Dispersion.

 (a) Computation of mean, median and mode.

 (b) Computation of mean deviation and standard deviation.

3. Practical Record and Viva.

SEMESTER-II

DSC1B: ECONOMIC GEOGRAPHY

(Credits:6, Theory-4, Practical-2)

Lectures: 60 (Theory:40, Practical:20)

Max. Marks:100 (Theory:70, Practical:30)

UNIT-I: Concept of Resources

(a) Meaning and concepts of resources, types.

(b) Distribution of forest, mineral and power resources.

(c) Resource conservation and conservation policy.

UNIT-II: Agriculture
(a) Types and problems of Agriculture.
(b) World distribution of the following crops - Rice, wheat, cotton.
(c) Agricultural regions of the world.

UNIT-III: Industries
(a) Factors affecting the location of industries.
(b) Major industrial regions of the world.
(c) World distribution of major industries, iron and steel, Textile.

UNIT-IV: Transport and Trade
(a) Types of transport - Roads, railways, Airways and waterways.
(b) Problems and utilizes of transport.
(c) Role of transport in trade (National and International).

UNIT-V: Some related economic activities of Asia
(a) Rice cultivation in China.
(b) Tea plantation in Srilanka.
(c) Oil resources in Middle- East.
(d) Ship building industry of Japan.

PRACTICAL

Representation of economic data through following diagrams
(a) Simple and compound bars.
(b) Simple and divided Pie/ Wheel diagrams.
(c) Uniform and proportional circles.
(d) Block and Sphere Diagrams.
(e) Depiction of data through Choropleth and Isopleths diagrams.
(f) Preparation of Maps to show distribution and production of Minerals, goods and resources.
(g) Preparation of Maps to show distribution of Crops in Odisha: Rice, Sugarcane.
(h) Line graphs, Time series Graphs.

SEMESTER-III
UNIT-I: Physical
(a) Physiographic division of India.
(b) Drainage, climate, soil and vegetation.

UNIT-II: Economic
(a) Types of characteristics of India Agriculture, production and distribution of major crops- rice, wheat and sugar cane.
(b) Production and distribution of mineral resource- Iron ore, Bauxite and coal.
(c) Production and distribution Iron and steel industry, fertilizer industry, information and technology.

UNIT-III: Population and settlement
(a) Distribution, density and growth of population in India, rural and urban population and population problems.
(b) Caste, religion, language, tribes and their correlates.
(c) Settlement Rural and Urban.

UNIT-IV: Selected Natural regions of India
(a) Ganga plain.
(b) Chhotnagpur plateau.
(c) Odisha coastal plain.

UNIT-V: Transport and Trade
(a) Road transport.
(b) Rail transport.
(c) Water transport.

PRACTICAL
1. Types of maps and map works.
 (a) Choropleth Maps- colour and shelling.
(b) Isopleths maps Isotherm and Isohyet.
(c) Enlargement and reduction by square methods.

 (a) Interpretation of Indian- Toposheets.
 (b) Interpretation of Indian weather map.

3. Practical Record and Viva.

SEMESTER-IV

DSC-1D: REGIONAL GEOGRAPHY OF ODISHA
(Credits:6, Theory-4, Practical-2)
Lectures: 60 (Theory:40, Practical:20)
Max. Marks:100 (Theory:70, Practical:30)

UNIT-I: Geomorphology
 (a) Geographical evolution and structural division of Odisha.
 (b) Physiographic of Odisha.
 (c) Drainage and Climate.
 (d) Soil and natural vegetation of Odisha.

UNIT-II
 (a) Types of Characteristics of Odisha Agriculture.
 (b) Rice, Pulses and Commercial Crops of Odisha.
 (c) Irrigation Projects of Odisha.

UNIT-III: Economic Base
 (a) Mineral resource Iron Ore, Bauxite.
 Power resource Coal and Hydel Power.
 (b) Industries.
 Iron and steel Industries.
 Aluminium Industries.
 Cotton textile Industries.
 Cement Industries.
UNIT-IV

(a) Population distribution and density.
(b) Trends of Population growth in Odisha.
(c) Road and Rail transport.

UNIT-V: Ecological Regions

(a) Northern Plateau.
(b) The Easternghat Zone.
(c) Central table Land.

PRACTICAL

1. Exercises on mean deviation and standard deviation for both un-group data and group data.
2. Exercise on co-efficient of variability.
3. Correlation product movement correlation and sphere mans rank correlation.
4. Regression analysis.
5. Drawing of scatter grams & regression line i.e. y on x and x on y.
SKILL ENHANCEMENT COURSES

SEC-1: REMOTE SENSING (Practical)
(Credits: 2, Max. Marks: 50)

Practical record A project file consisting of 5 exercises on using any method on above mentioned themes.

SEC-2: GEOGRAPHICAL INFORMATION SYSTEM (GIS) - (Practical)
(Credits: 2, Max. Marks: 50)

Practical Record A project file consisting of 5 exercises on using any GIS software on above mentioned themes.

SEC-3: STATISTICAL METHODS IN GEOGRAPHY -(Practical)
(Credits: 2, Max. Marks: 50)

1. Use of Data in Geography: Geographical Data Matrix, Significance of Statistical Methods in Geography; Sources of Data, Scales of Measurement (Nominal, Ordinal, Interval, Ratio).

2. Tabulation and Descriptive Statistics: Frequencies (Deciles, Quartiles), Cross Tabulation, Central Tendency (Mean, Median and Mode, Centro-graphic Techniques, Dispersion (Standard Deviation, Variance and Coefficient of Variation).

5. Association and Correlation: Rank Correlation, Product Moment Correlation, and Simple Regression, Residuals from regression

Class Record:
Each student will submit a record containing five exercises:
1. Construct a data matrix of about \((10 \times 10)\) with each row representing an areal unit (districts or villages or towns) and about 10 columns of relevant attributes of the areal units.

2. Based on the above table, a frequency table, measures of central tendency and dispersion would be computed and interpreted for any two attributes.

3. Histograms and frequency curve would be prepared on the entire data set and attempt to fit a normal curve and interpreted for one or two variables.

4. From the data matrix a sample set (20 Percent) would be drawn using, random - systematic and stratified methods of sampling and locate the samples on a map with a short note on methods used.

5. Based on of the sample set and using two relevant attributes, a scatter and regression line would be plotted and residual from regression would be mapped with a short interpretation.

SEC-4: PROJECT WORK (Practical)
(Credits:2, Max. Marks:50)

Disaster Management based Project Work.
The Project report based on any two field based case studies among following disasters and one disaster.
Preparedness plan of respective college or locality:

1. Flood.
2. Drought.
3. Cyclone and Hailstorms.
4. Earthquake.
5. Landslides.
DISCIPLINE SPECIFIC ELECTIVES

DSE-1A: POPULATION GEOGRAPHY
(Credits: 6, Theory-4, Practical-2)
Lectures: 60 (Theory:40, Practical:20)
Max. Marks:100(Theory:70, Practical:30)

UNIT-I: Geomorphology
(a) Scope, objective and nature of population Geography.
(b) Source of population data.
(c) Problems of mapping of population.

UNIT-II
(a) Factors controlling distribution of world population.
(b) Growth of population and their determinants.
(c) Population density and distribution.

UNIT-III: Climatology
(a) Population composition- Age and sex, Religion and caste.
(b) Population dynamics Measurement of fertility, mortality and migration.
(c) Human development Index and its components.

UNIT-IV
(a) Population and resource relationship.
(b) Population Resource regions.
(c) Population and Environment.

UNIT-V: Population theories
(a) Malthusian theory.
(b) Neo- Malthusian theory.
(c) Demographic transition theory.

PRACTICAL
1. Construction of population pyramids.

3. Drawing of triangular diagram and lorenge curve.

4. Practical record and Viva.

DSE-1B: URBAN GEOGRAPHY
(Credits:6, Theory-4, Practical-2)
Lectures: 60 (Theory:40, Practical:20)
Max. Marks:100(Theory:70, Practical:30)

UNIT-I
Nature and scope, origin and growth of urban settlement. UNIT-II
(a) Factors affecting growth and distribution of Urban settlement.

(b) Trend of Urbanization.

UNIT-III: Climatology
(a) Classification of Town.

(b) Concept of the following urban elements.
 (i) Rural urban fringe.
 (ii) Urban Hierarchy.
 (iii) Conurbation.

UNIT-IV
Urban issues Problems of housing, slums, civic amenities (water and transport). UNIT-V
Case studies of Delhi, Mumbai and Kolkata with reference to urban issues.

PRACTICAL
1. Exercises on point symbol Uniform and multiple dot.

2. Segmented, wheel and bar diagram.

3. Traffic flow diagram.

4. Practical record and Viva.

GENERIC ELECTIVES(GE)

GE1: INDIAN GEOGRAPHY (OPTIONAL)
(Credits:6, Theory-4, Practical-2)
Lectures: 60 (Theory:40, Practical:20)
Max. Marks:100(Theory:70, Practical:30)
UNIT-I: Physical

(a) Location, Physiographic divisions.
(b) Drainage, system The Indus system, The Ganga system, The Brahmaputra system.
(c) Evolution of drainage systems.

UNIT-II: Climate, soil and natural vegetation

(a) The mechanism of Indian Monsoon, The seasons of India.
(b) Soils of India-Classification, Characteristics.
(c) Natural vegetation of India Classification, Characteristics.

UNIT-III: Agriculture, Mineral and power Resources

(a) Agriculture types, distribution of major crops. (Rice, Wheat, Cotton).
(b) Mineral resources Iron ores, Manganese, Boxcite.
(c) Power resources Coal, Petroleum, Natural gas.

UNIT-IV: Population and Settlement

(a) Distribution, Density and Growth of population in India.
(b) Caste, Religion, Language, Tribes.
(c) Settlement Rural and Urban.

UNIT-V: Industries & Transport

(a) Types and distribution (Iron and steel, Textiles).
(b) Road transports, Rail transport and water transport.

PRACTICAL

Concept of Spheroid and Geoid: Coordinate and grid reference system

1. Location of place on grid reference system using 8 digit, 12 digit and 16 digit system.
2. Drawing of:
 (i) Simple Cylindrical Projection
 (ii) Cylindrical Equal Area
 (iii) Simple conical projection with one and Two standard parallel
 (iv) Bonnes Projection
UNIT-I

(a) Definition and concept of disasters.
(b) Hazards, disasters, risk and vulnerability.
(c) Classification of disasters.

UNIT-II: Disaster in India

(a) Flood causes, impact, distribution and mapping.
(b) Cyclone causes, impact, distribution and mapping.
(c) Draught causes, impact, distribution and mapping.

UNIT-III: Geomorphic hazards in India causes, impact, mapping

(a) Earthquake.
(b) Tsunami.
(c) Landslide.

UNIT-IV: Man made disaster causes, impact, distribution and mapping

(a) Fire Hazards.
(b) Chemical Hazards.
(c) Industrial Hazards.

UNIT-V: Response and mitigation to disaster

(a) Mitigation and preparedness.
(b) Function of NDMA, NIDM & NDRF.
(c) Indigenous community based disaster management.

PRACTICAL

Field Work And Research Methodology

1. Preparation of:
 (i) Observation Schedule (Participant / Non Participant).
(ii) Questionnaires (Open/ Closed / Structured / Non-Structured).

(iii) Guide line for Focused Group Discussions.

2. Preparation of Questionnaires for Socio-Economic survey.

Note:

(i) Each student will prepare an individual report based on primary and secondary data collected during field work.

(ii) The students / teachers can opt to take students in or outside the NCR, depending upon, problem to be studied.

(iii) The duration of the field work should not exceed 10 days.

(iv) The word count of the report should be about 8000 to 12,000 words excluding figures, tables, photographs, maps, references and appendices.

(v) One copy of the report on A 4 size paper should be submitted in soft binding.
GEOLOGY (HONOURS)

SEMESTER-I

C:1-GEOLOGY-I

(Credit:6, Theory:4, Practical: 2)
Theory: 70 Marks, Practical: 30 Marks
Theory: 40 Classes (1hr duration)

(The emphasis of course is on applications in solving problems of interest to physicists. The students are to be examined entirely on the basis of problems, seen and unseen.)

UNIT- I: General geology-A
Geology - its perspective, scope and subdivisions; Earth in the Solar system; Origin of the Earth, Seismology and internal structure of the earth; Radioactivity and age of the earth.

UNIT-II: General geology-B
Volcanoes: Types, products and distribution. Earthquakes - intensity, causes and distribution.

UNIT: Geomorphology-A
Weathering and Erosion, Mass wasting; Geological works of rivers, glaciers, and landforms produced by them.

UNIT-IV: Geomorphology-B
Geological works of wind, underground water and oceans and landforms produced by them.

UNIT-V: Quaternary Geology
Scope, climate change, eustatic movement and other geological phenomena during Quaternary; Landforms and deposits with special reference to India; Neotectonics; Glaciation and its causes; Sea-level change during Quaternary.

PRACTICAL

Study of geomorphic forms. Study of contour patterns and drawing of profiles. Laboratory records and viva voce.

C:2-GEOLOGY-II

(Credit:6, Theory:4, Practical:2)
Theory: 70 Marks, Practical: 30 Marks
Theory: 40 Classes (1 hr. duration)

(The emphasis of course is on applications in solving problems of interest to physicists. The students are to be examined entirely on the basis of problems, seen and unseen.)

UNIT-I: Geotectonics-A
Tectonic movements Epeiorogeny and orogeny; Isostasy concept and theories; Geosynclines; Mountain building theories.
UNIT-II: Geotectonics-B
Plate tectonics concept and types of plate margins; Continental drift evidences and causes; Sea-floor spreading; Mid-oceanic ridge; Island arc.

UNIT-III: Photogeology
Principles of aerial photography; Scale, photo-elements and interpretation. Application of aerial photography in mineral exploration, ground water exploration and geomorphology.

UNIT-IV: Remote Sensing
Principles of remote sensing, Electromagnetic radiation, Scale, Sensors; Platforms, Photo mosaic and FCC. Application of remote sensing in mineral exploration, ground water exploration and geomorphology.

UNIT-V: Marine Geology
Relief of ocean floor; Marine sediments and their classification; Marine resources; Submarine canyons, Sea mounts and guyots; Coral reef.

PRACTICAL
Study of aerial photographs and uses of stereoscopes. Laboratory records and viva voce.

SEMESTER-II

C:3-GEOLOGY-III
(Credit:6, Theory:4, Practical: 2)
Theory: 70 Marks, Practical: 30 Marks
Theory: 40 Classes (1 hr. duration)

UNIT-I: Crystallography-A
Crystalline and non-crystalline substances, Crystals - definition, characteristics, intercepts, parameters, indices and forms. Symmetry elements and classification of crystals in to seven systems. International Symbol; Holohedrism, hemihedrism hemimorphism and enantiomorphism. Study of axial relationship, symmetry elements and forms present in 4/m 2/m, 3m, 2/m , 4/m2/m2/m and 2/m classes.

UNIT-II: Crystallography-B
Study of axial relationship, symmetry elements and forms present in 6/m2/m2/m, 622, 2/m, 3m, 32, 2/m2/m2/m, 2/m and classes. Twinning, Fundamentals of stereographic projection of crystals. Zone and zonal laws.

UNIT-III: Mineralogy-A
Scope of mineralogy; chemical bonding and compound formation. Definition and classification of minerals. Physical properties of minerals, Silicate structure and its classification.

UNIT-IV: Mineralogy-B
Study of atomic structure, chemistry, physical, optical properties and uses of minerals of Olivine, Feldspar, Pyroxene, Amphibole, Garnet, Feldspathoids and Mica groups.

UNIT-V: Mineralogy-C
Isomorphism, polymorphism and pseudomorphism; Chemical composition, physical and optical properties of important rock forming minerals.
PRACTICAL

Study and identification of crystal models as mentioned in theory. Megascopic identification of rock forming minerals, Laboratory records and viva voce.

C:4-GEOLOGY-IV
(Credit:6, Theory:4, Practical: 2)
Theory: 70 Marks, Practical: 30 Marks
Theory: 40 Classes (1 hr. duration)

UNIT-I: Mineral Optics-A

UNIT-II: Mineral Optics-B

UNIT-III: Mineral Optics-C
Isotropsim and anisotropism, Extinction and extinction angle. Pleochroism, pleochroic scheme, Birefringence; Outline of study of optical characters of minerals in thin sections.

UNIT-IV: Geochemistry-A
Cosmic abundance of elements; composition of planets and meteorites. Structure and composition of earth.

UNIT-V: Geochemistry-B
Geochemical classification of elements, Primary geochemical differentiation; Atomic substitution and solid solution.

PRACTICAL

Microscopic identification of rock forming minerals; Measurement of extinction angle; sign of elongation and order of interference colour. Laboratory records and viva voce.

SEMESTER-II

C:5-GEOLOGY-V
(Credit:6, Theory:4, Practical: 2)
Theory: 70 Marks, Practical: 30 Marks
Theory: 40 Classes (1 hr. duration)

UNIT-I: Igneous Petrology-A
Magma and its characteristics; Crystallization behaviour of unicomponent magma; bicomponent magma showing solid solution and eutectic relationships, Introduction to Di-Ab-An ternary system.

UNIT-II: Igneous Petrology-B
Introduction, Forms, Texture, Mega- and micro-structures of igneous rocks.
UNIT-III: Igneous Petrology-C
Bowens reaction series and its implications. Differentiation of magma and diversity of igneous rocks.

UNIT-IV: Igneous Petrology-D
Classification of igneous rocks. Preliminary idea on assimilation processes.

UNIT-V: Igneous Petrology-E
Petrographic notes on Basalt, Dolerite, Gabbro, Granite, Pegmatite, Syenite, Dunite, Diorite, Peridotite, Carbonatite, Anorthosite and Kimberlite and their occurrences in India.

PRACTICAL
Megascopic and microscopic identification of igneous rocks. Laboratory records and viva voce.

C:6-GEOLOGY-VI
(Credit:6, Theory:4, Practical: 2)
Theory: 70 Marks, Practical: 30 Marks
Theory: 40 Classes (1 hr. duration)

UNIT-I: Sedimentary Petrology-A
Introduction, formation of sediments and sedimentary rocks. Elementary idea on sedimentary environments.

UNIT-II: Sedimentary Petrology-B
Texture, structure and diagenesis of sedimentary rocks. Elementary idea on sedimentary facies.

UNIT-III: Sedimentary Petrology-C
Classification of sedimentary rocks. Sedimentary basins of India.

UNIT-IV: Sedimentary Petrology-D
Palaeocurrent; Heavy minerals and Provenance.

UNIT-V: Sedimentary Petrology-E
Petrographic notes on sandstones, conglomerate, shale, limestone and breccia and their occurrences in India.

PRACTICAL
Megascopic and microscopic identification of sedimentary rocks. Laboratory records and viva voce.

C:7-GEOLOGY-VII
(Credit:6, Theory:4, Practical: 2)
Theory: 70 Marks, Practical: 30 Marks
Theory: 40 Classes (1hr duration)

UNIT-I: Metamorphic Petrology-A
Introduction, agents and types of metamorphism; ACF and AKF diagrams.

UNIT-II: Metamorphic Petrology-B
Texture and structure of metamorphic rocks.

UNIT-III: Metamorphic Petrology-C
Classification of metamorphic rocks; Metamorphic differentiation.
UNIT-IV: Metamorphic Petrology-D
Zone and grade and facies of metamorphism. Metasomatism.

UNIT-V: Metamorphic Petrology-E
Petrographic notes on important rock types like schists, gneisses, marble, quartzite, slate, phyllites, khondalite and charnockite and their occurrences in India.

PRACTICAL

Megascopic and microscopic identification of metamorphic rocks. Laboratory records and viva voce.
SEMESTER-III

C:8-GEOLOGY-VIII
(Credit:6, Theory:4, Practical: 2)
Theory: 70 Marks, Practical: 30 Marks
Theory: 40 Classes (1hr duration)

UNIT-I: Palaeontology-A
Fossil-definition and conditions of fossilization; Mode of preservation and geological significance of fossils.
UNIT-II: Palaeontology-B
Morphology, evolution and geological history of Trilobite, Brachiopoda, Pelecypoda, Cephalopoda and Gastropoda.
UNIT-III: Palaeontology-C
Morphology, evolution and geological history of Echinoidea, Coral and graptolite. Index and Zonal guide fossils. Brief ideas on evolution of horse and man.
UNIT-V: Palaeobotany
Scope of paleobotany, taxonomy of plants, Gondwana flora and their significance.
UNIT-V: Palynology
Introduction; Separation of spores and pollens and mounting for study. Utility of palynological studies in different fields.

PRACTICAL

Identification of important invertebrate and plant fossils; Drawing and labeling of fossils; Arrangement of fossils in chronological order; Laboratory records and viva voce.

C:9-GEOLOGY-IX
(Credit:6, Theory:4, Practical: 2)
Theory: 70 Marks, Practical: 30 Marks
Theory: 40 Classes (1hr duration)

UNIT-I: Stratigraphy-A
Principle of Stratigraphy, Stratigraphic units; Stratigraphic correlation, Standard stratigraphic time scale and Indian equivalences; Geomorphic and tectonic divisions of India.
UNIT-II: Stratigraphy-B
Precambrian stratigraphy of Karnataka, Odisha, Jharkhand, Rajasthan, Madhya Pradesh and Maharashtra. Stratigraphy of Cuddapah and Vindyan basins.
UNIT-III: Stratigraphy-C
Gondwana rocks with special emphasis on fossils, climate and economic importance. Deccan traps and Tertiary of Assam.
UNIT-IV: Stratigraphy-D
Triassic of Spiti, Jurassic of Kutch and Cretaceous of Trichinopoly. Siwalik rocks.
UNIT-5: Paleogeography
Elements of paleogeography; Paleogeography of Indian subcontinent during Permo-Carboniferous, Triassic, Jurassic and Cretaceous periods.

PRACTICAL
Drawing of stratigraphic units in outline map of India and Odisha; Identification and interpretation of stratigraphic assemblages; Drawing of paleogeographic maps as mentioned in theory; Laboratory records and viva voce.

C:10-GEOLOGY-X
(Credit:6, Theory:4, Practical: 2)
Theory: 70 Marks, Practical: 30 Marks
Theory: 40 Classes (1hr duration)

UNIT-I: Structural geology-A
Introduction, Attitude of beds; Vs rule; Deformation, concept of stress and strain; Outlier, Inlier, Nappe, Klippe and Window.

UNIT-II: Structural geology-B
Fold - geometry, classification, recognition in field and map, causes of folding. Top and bottom criteria of deformed strata.

UNIT-III: Structural geology-C
Fault- classification, mechanism, significance, recognition in the field and map, general effects of faulting. Joints - geometry, classification and significance.

UNIT-IV: Structural geology-D
Unconformity - types, significance, recognition in the field and map, difference between fault and unconformity.

UNIT-V: Structural geology-E Foliation - types and relation with major structures, Lineation - types and relation with major structures; Salt domes and diapirs.

PRACTICAL
Interpretation of structure, stratigraphy and geologic history from maps; Drawing of sections; Completion of outcrops; Three point problems; Thickness and depth problems; Laboratory records and viva voce.

SEMESTER-V

C:11-GEOLOGY-XI
(Credit:6, Theory:4, Practical: 2)
Theory: 70 Marks, Practical: 30 Marks
Theory: 40 Classes (1hr duration)

UNIT-I: Ore Genesis-A
Process of formation of ore bodies: Magmatic concentration, Hydrothermal processes, Wall rock alteration and Paragenesis, Zoning.
UNIT-II: Ore Genesis-B
Process of formation of ore bodies: Residual and mechanical concentration, Oxidation and Supergene enrichment.

UNIT-III: Ore Genesis-C
Process of formation of ore bodies: Sedimentation, Evaporation, Metamorphism.

UNIT-IV: Energy Resources
Origin, occurrence, distribution and uses of coal and petroleum; Atomic minerals.

UNIT-V: Mineral Economics
Strategic, essential and critical minerals. Sustainable developments of minerals; Conservation of mineral resources.

PRACTICAL
Megascopic study of strategic, critical and essential minerals. Laboratory records and viva voce.

C:12-GEOLOGY-XII
(Credit:6, Theory:4, Practical: 2)
Theory: 70 Marks, Practical: 30 Marks
Theory: 40 Classes (1hr duration)

UNIT-I: Mineral Resources-A
Mineralogy, mode of occurrence, origin, Indian distribution and uses of ores of Fe and Mn. Important ore deposits of India.

UNIT-II: Mineral Resources-B
Mineralogy, mode of occurrence, origin, Indian distribution and uses of ores of Cr and Al. Important ore deposits of India.

UNIT-III: Mineral Resources-C
Mineralogy, mode of occurrence, origin, Indian distribution and uses of ores of Cu, Pb and Zn. Important ore deposits of India.

UNIT-IV: Mineral Resources-D
Mineralogy, mode of occurrence, origin, Indian distribution and uses of Mica, Asbestos, Kyanite, Sillimanite, Graphite and Magnesite.

UNIT-V: Mineral Resources-E
Controls of ore localization, Classification of mineral deposits; Metallogenic epochs and provinces; Ore districts.

PRACTICAL
Megascopic identification and uses of important metallic and non-metallic minerals; Laboratory records and viva voce.

SEMESTER-VI

C:13-GEOLOGY-XIII
(Credit:6, Theory:4, Practical: 2)
Theory: 70 Marks, Practical: 30 Marks
Theory: 40 Classes (1hr duration)
UNIT-I: Groundwater-A
Hydrological cycle, vertical zonation of ground water, Properties of water bearing formations - porosity, permeability, specific yield, specific retention, storativity. Aquifer types- Confined and unconfined aquifers, aquitard, aquiclude, aquifuse. Dacrys law.

UNIT-II: Groundwater-B
Ground Water exploration - types of wells, groundwater provinces of India and Odisha. Sea-water intrusion, Quality of ground water and its use in domestic, agriculture and industries; Ground water pollution.

UNIT-III: Engineering Geology-A
Introduction, Engineering properties of rocks and soils, Geological considerations of Dam and reservoir site selection.

UNIT-IV: Engineering Geology-B
Geological considerations of tunnel alignment, bridge site selection. Earthquake resistant structures, Soil - classification, erosion and conservation.

UNIT-V: Exploration Geology
Geological, Geophysical and Geochemical exploration methods.

PRACTICAL

Problems related to groundwater and engineering properties of rocks. Laboratory records and viva voce.

C:14-GEOLOGY-XIV
(Credit:6, Theory:4, Practical: 2)
Theory: 70 Marks, Practical: 30 Marks
Theory: 40 Classes (1hr duration)

UNIT-I: Mining
Terminology in mining, Open-cast and Underground mining methods, Drilling, Surveying.

UNIT-II: Disaster Management
Natural disasters and their management Earthquake, Landslide, Flood, Tsunami and Cyclone.

UNIT-III: Environmental Geology-A
Renewable and non-renewable resources; Conservation of mineral resources; Impact of mining on environment; Fundamentals of environmental impact assessment.

UNIT-IV: Environmental Geology-B
Management of solid wastes including mining wastes; Fly ash, Radioactive wastes; Environmental protection- Legislative measures in India; Fluorosis problems and arsenic poisoning in India Causes and remedial measures.

UNIT-V: Resource Evaluation
Sampling; Assaying; Ore-reserve estimation

PRACTICAL

Borehole problems, ore reserve estimation. Laboratory records and viva voce.
DISCIPLINE SPECIFIC ELECTIVE (DSE)

DSE: 1-GEOLOGY OF ODISHA
(Credit: 6, Theory-05, Tutorial-01)
Theory: 50 Classes (1hr. duration)
Max. Marks: 100

UNIT-I: Geomorphology.

UNIT-II: Stratigraphy of Odisha.

UNIT-IV: Mineral resources of Odisha.

UNIT-V: Mineral-based industries of Odisha.

DSE: 2-EXTRA-TERRESTRIAL GEOLOGY
(Credit: 6, Theory-05, Tutorial-01)
Theory: 50 Classes (1hr. duration)
Max. Marks: 100

UNIT-I: Solar system.
UNIT-II: Meteorites, asteroids and comets.
UNIT-III: Relationship of Earth with Moon, Mars and other planets.
UNIT-IV: Lunar topography.
UNIT-V: Lunar petrology.

DSE: 3-CLIMATE CHANGE
(Credit: 6, Theory-05, Tutorial-01)
Theory: 50 Classes (1hr. duration)
Max. Marks: 100

UNIT-I: Weather and Climate; Concept and causes of climate change.
UNIT-II: Global warming and Green house effect,
UNIT-III: Impact of climate change on environment.
UNIT-IV: Rise in sea level; Impact of climate change on ocean; El Nino.
UNIT-V: Desertification Causes and effects

DSE: 4-PROJECT WORK
(Credit: 6, COMPULSORY)
Max. Marks: 100
SKILL ENHANCEMENT COURSE (SEC)

SEC: 1-COMMUNICATIVE ENGLISH & ENGLISH WRITING
SKILL (Compulsory)
(Credits: 02)
Theory: 20 Classes (1hr duration)

SEC: 2-RENEWABLE ENERGY AND ENERGY HARVESTING
(Credits: 02)
Theory: 20 Classes (1hr duration)

UNIT: I
Fossil fuels and Alternate Sources of energy: Fossil fuels and nuclear energy, their limitation, need of renewable energy, non-conventional energy sources. An overview of developments in Offshore Wind Energy, Tidal Energy, Wave energy systems, Ocean Thermal Energy Conversion, solar energy, biomass, biochemical conversion, biogas generation, geothermal energy tidal energy, Hydroelectricity.
Solar energy: Solar energy, its importance, storage of solar energy, solar pond, non plate collector, solar distillation, solar cooker, solar green houses, solar cell, absorption air conditioning. Need and characteristics of photovoltaic (PV) systems, PV models and equivalent circuits, and sun tracking systems. (10 Lectures)

UNIT-II

3. GROUNDWATER MANAGEMENT
(Credits: 02)
Theory: 20 Classes (1hr duration)

UNIT-I: Concept of Groundwater
Hydrological cycle, vertical zonation of ground water, Properties of water bearing formations - porosity, permeability, specific yield, specific retention, storativity.

UNIT-II: Aquifer characteristics
Aquifer types- Confined and unconfined aquifers, aquitard, aquiclude, aquifuse. Darcys law.
UNIT-III: Quality of Groundwater
Physical and Chemical Quality of ground water and its use in domestic, agriculture and industries; Ground water pollution.

UNIT-IV: Groundwater Harvesting
Groundwater basin, Water table fluctuation, Artificial recharge of groundwater, Rainwater Harvesting.

UNIT-V: Groundwater exploration & pollution
Ground Water exploration - types of wells, Sea-water intrusion, Groundwater hazard due to Arsenic and Fluoride and their mitigation.

4. DIASASTER MANAGEMENT
(Credits: 02)
Theory: 20 Classes (1hr duration)

UNIT-I: Understanding disaster
Concept and definitions of different terms of disaster, classification of disasters-natural, manmade; difference between disaster and hazard- atmospheric and geo-hazards, Disaster risk, Vulnerability.

UNIT-II: General characteristics and problem areas of different atmospheric hazards
Flood, cyclone, drought, heat wave, lightning.

UNIT-III: Characteristics of Geo-hazards
Earthquake, Tsunami, volcanoes, Landslide.

UNIT-IV: Concepts of disaster management
Pre disaster, post disaster management, real time management, Warning system, Public communication system, Relief operation, rescue operation.

UNIT-V: Disaster risk mitigation
Hazard mapping and forecasting. Preparedness for damage mitigation and coping with disasters. Evacuation strategy, Capacity building for disaster/damage mitigation.
GENERIC ELECTIVE PAPERS (GE)
(Minor-Geology) for other Departments/Disciplines
(Credits: 06 each)

SEMESTER-I

GE:1
(Credits: 06, Theory: 04, Practical: 02)
Max. Marks: 100 (Theory: 70, Practical: 30)

UNIT-I: General geology
Scope and subdivisions of Geology; Origin, age and interior of the Earth; Earthquake and volcanoes.

UNIT-II: Geomorphology
Weathering and erosion; Geological work of river, wind, glacier and underground water.

UNIT-III: Crystallography
Crystalline and non-crystalline substances; Symmetry elements, parameters and indices; Classification of crystals into six systems. Symmetry elements and forms of normal classes of isometric, tetragonal and orthorhombic systems.

UNIT-IV: Mineralogy
Minerals: definition and classification; Study of physical and chemical characters of rock forming minerals like quartz, feldspar, hypersthene, diopside, augite, hornblende, muscovite, biotite, garnet, olivine, sillimanite, kyanite, tourmaline, topaz, epidote, calcite, apatite, fluorite, talc, gypsum and corundum.

UNIT-V: Optical Mineralogy
Nature of light rays; Polarization, Double refraction, Isotropism, Anisotropism, Nicol prism, Petroligical microscope; Behaviour of light in thin section; Birefringence; pleochroism, extinction angle and interference colours.

PRACTICAL
Identification of crystal models with respect to axis, symmetry and forms; Megascopic and microscopic identification of minerals mentioned in theory. Laboratory record and viva voce.

SEMESTER-II

GE:2
(Credits: 06, Theory: 04, Practical: 02)
Max. Marks: 100 (Theory: 70, Practical: 30)
UNIT-I: Igneous Petrology
Forms and texture of igneous rocks; Bowens reaction series; Classification of igneous rocks; Magmatic differentiation; Petrograpgy of granite, syenite, peridotite, anorthosite, gabbro, dolerite and basalt.

UNIT-II: Sedimentary Petrology
Formation of sedimentary rocks; Texture, structure and classification of sedimentary rocks. Petrography of conglomerate, breccia, sandstone, shale and limestone.

UNIT-III: Metamorphic Petrology

UNIT-IV: Palaeontology
Fossilisation and uses of fossils; Morphology and geologic history of trilobite, brachiopod, pelecypod, gastropod, cephalopod. Gondwana flora.

UNIT-V: Stratigraphy
Definition and scope of stratigraphy. Stratigraphic units and correlation. Physiographic division of Indian subcontinent. Stratigraphy of type areas of Archaeans, Cuddapah, Vindhyan, Triassic, Jurassic, Cretaceous and Gondwanas.

PRACTICAL
Megascopic and microscopic identification of igneous, sedimentary and metamorphic rocks as mentioned in theory. Morphological study of invertebrate and plant fossils mentioned in theory; drawing and labeling of fossils. Laboratory record and viva voce.

SEMESTER-III

GE:3
(Credits: 06, Theory: 04, Practical: 02)
Max. Marks: 100(Theory: 70, Practical: 30)

UNIT-I: Structural Geology

UNIT-II: Geotectonics
Orogeny and epeiorogeny; Plate tectonics, continental drift; Isostasy; mid oceanic ridge, geosynclines.
UNIT-III: Ground Water
Hydrologic cycle; vertical distribution of groundwater; porosity and permeability; types of aquifers; Darcy's law. Quality of groundwater and its use; groundwater provinces of India.

UNIT-IV: Engineering Geology
Engineering properties of rocks; Geological and geotechnical studies of dam, reservoir and tunnel. Earthquake resistant structures.

UNIT-V: Environmental Geology
Renewable and non-renewable resources; Conservation of mineral resources; Impact of mining on environment; Management of solid wastes including mining wastes.

PRACTICAL
Interpretation of structure, stratigraphy and geologic history from maps; Drawing of sections; Completion of outcrops; Identification of building stones and their uses. Laboratory records and viva voce

SEMESTER-IV
GE:4
(Credits: 06, Theory: 04, Practical: 02)
Max. Marks: 100 (Theory: 70, Practical: 30)

UNIT-I: Ore Genesis
Ore mineral, gangue, tenor and grade; Processes of formation of mineral deposits: Magmatic, Hydrothermal, Mechanical and residual concentration, oxidation and supergene sulphide enrichment.

UNIT-II: Prospecting
Geological, geophysical and geochemical prospecting methods; Controls of ore localization; Metallogenic epoch and provinces; Ore reserve estimation.

UNIT-III: Mining and Resource Evaluation
Opencast and underground mining methods; sampling methods.

UNIT-IV: Mineral Resources-A
Mineralogy, mode of occurrence, distribution and uses of ores of Fe, Mn, Cr, Cu and Al ores.

UNIT-V: Mineral Resources-B
Mineralogy, mode of occurrence, origin, Indian distribution and uses of Mica and Asbestos. Origin, occurrence, distribution and uses of coal and petroleum.

PRACTICAL
Megascopic identification and uses of important metallic and non-metallic minerals mentioned in theory; Laboratory records and viva voce.

Recommended Books:

5. A. Holmes - Principles of Physical Geology.

16. Brain Mason - Geochemistry.

27. Dobrin - Geophysical Prospecting.
31. E.A. Keller - Environmental Geology
44. J. A. Steers (1979) The Unstable Earth, Kalyani Publisher, New Delhi.
51. Levorsen - Petroleum Geology.
55. M. P. Billings () Structural Geology.
56. M. P. Billings (1972) Structural Geology, Prantice-Hall of India, New Delhi
71. R. N. Hota (2011) Practical approach to crystallography and mineralogy; CBS Pub. & Dist., New Delhi
85. S. Ray - Text Book of Geology.
88. Sharma and Ram - Introduction to India’s Economic Minerals.
89. Shephard - Submarine Geology.

97. Winchell-Optical Mineralogy.
MATHEMATICS (HONOURS)

SEMESTER-I

C:1-CALCULUS-I
(Total Marks: 100)

Part-I (Marks: 70)
4 Lectures, 1 Tutorial (per week)

Unit-I
Hyperbolic functions, higher order derivatives, Leibnitz rule and its applications to problems of the type $e^{ax+b}\sin x, e^{ax+b}\cos x, (ax + b)^n \sin x, (ax + b)^n \cos x$, concavity and inflection points, asymptotes, curve tracing in Cartesian coordinates, tracing in polar coordinates of standard curves, L’Hospitals rule, applications in business, economics and life sciences.

Unit-II
Reduction formulae, derivations and illustrations of reduction formulae of the type $\int \sin^n x \, dx$, $\int \cos^n x \, dx$, $\int \tan^n x \, dx$, $\int \sec^n x \, dx$, $\int (\log x)^n \, dx$, $\int \sin^n x \cos^n x \, dx$, volumes by slicing, disks and washers methods, volumes by cylindrical shells, parametric equations, parameterizing a curve, arc length, arc length of parametric curves, area of surface of revolution.

Unit-III
Techniques of sketching conics, reflection properties of conics, rotation of axes and second degree equations, classification into conics using the discriminant, polar equations of conics. Sphere, Cone, Cylinder, Conicoids.

Unit-IV
Vector triple product, Introduction to vector functions, operations with vector-valued functions, limits and continuity of vector functions, differentiation and integration of vector functions, tangent and normal components of acceleration.

Part-II (PRACTICAL)
(Marks: 30)

List of Practical (Using any software/MATLAB)
Practical/Lab work to be performed on a Computer.

1. Plotting the graphs of the functions e^{ax+b}, $\log(ax + b)$, $1/(ax + b)$, $\sin(ax + b)$, $\cos(ax + b)$, $|ax + b|$ and to illustrate the effect of a and b on the graph.

2. Plotting the graphs of the polynomial of degree 4 and 5, the derivative graph, the second derivative graph and comparing them.

4. Obtaining the surface of revolution of curves.

5. Tracing of conics in cartesian/polar coordinates.

7. Matrix operation (addition, multiplication, inverse, transpose).

Books Recommended:

Books for Reference:

C:2-ALGEBRA-I

Total Marks: 100-(Theory: 80 Marks+Mid-Sem: 20 Marks)

5 Lectures, 1 Tutorial (per week)

Unit-I
Polar representation of complex numbers, \(n \)-th roots of unity, De Moivres theorem for rational indices and its applications.
Unit-II
Equivalence relations, Basic Terminology, Functions, Inverse and composition of functions, One-to-One correspondence and cardinality of a set, Division algorithm, Divisibility and Euclidean algorithm, Prime numbers, Congruence relation between integers, Principles of Mathematical Induction, Statement of Fundamental Theorem of Arithmetic.

Unit-III
Systems of linear equations, row reduction and echelon forms, vector equations, the matrix equation $Ax = b$, solution sets of linear systems, applications of linear systems, linear independence.

Unit-IV
Introduction to linear transformations, Matrix of a linear transformation, Inverse of a matrix, Characterizations of invertible matrices. Subspaces of \mathbb{R}^n, Dimension of subspaces of \mathbb{R}^n and Rank of a matrix, Eigen values, Eigen Vectors and Characteristic equation of a matrix.

Books Recommended:

SEMESTER-II

C:3-REAL ANALYSIS (ANALYSIS-I)

Total Marks: 100-(Theory: 80 Marks+Mid-Sem: 20 Marks)

5 Lectures, 1 Tutorial (per week)

Unit-I
Review of Algebraic and Order Properties of \mathbb{R}, Upper bound & Lower bound, Least upper bound (LUB), Greatest lower bound (GLB), LUB & GLB property of an ordered field, Completeness of an ordered field, Incompleteness of \mathbb{Q}, Supremum and Infimum, Roots, Archimedean property, Rational & Irrational density theorems, Decimal representations of real numbers.

Unit-II
Idea of countable, uncountable sets and theorems relating to these sets, Sequences, Convergence & divergence of sequences, Limit of a sequence & Limit Theorems, Monotonic sequences, Weierstrass completeness principle, Nested Intervals, Cantor’s completeness principle, Idea about higher order cardinals (restricted).

Unit-III
Subsequences, Bolzano Weierstrass theorem for sequences, Cluster points, Cauchy(Fundamental)
sequence, Cauchy’s Convergence Criterion, Limit superior and Limit inferior, Convergence and divergence of infinite series, Series of positive terms, Tests of convergence.

Unit-IV
Absolute convergence, Rearrangement of terms of a series, Conditional convergence of a series, Open sets, Closed sets, Limit points, Closure, Interior and Boundary of sets. Bolzano Weierstrass theorem for sets.

Book Recommended:

Books for Reference:

C-4: DIFFERENTIAL EQUATIONS
(Total Marks: 100)
Part-I (Marks: 70)
4 Lectures, 1 Tutorial (per week)

Unit-I

Unit-II
Second order linear equations (both homogeneous and non-homogeneous) with constant coefficients, second order equations with variable coefficients, variation of parameters, method of undetermined coefficients, Euler’s equation, Second order differential equations with variable coefficients, Equations reducible to linear equations with constant coefficients.
Unit-III
Power series solutions of second order differential equations.

Unit-IV
Laplace transforms and its applications to solutions of differential equations.

Part-II(PRACTICAL)
(Marks: 30)
List of Practical (Using any Software/MATLAB)
Practical/Lab work to be performed on a Computer.

1. Plotting of second order solution of family of differential equations.
3. Growth model (exponential case only).
4. Decay model (exponential case only).
5. Oxygen debt model.

Book Recommended:

Books for Reference:

SEMESTER-III

C-5: THEORY OF REAL FUNCTIONS (ANALYSIS-II)
Total Marks: 100-(Theory: 80 Marks+Mid-Sem: 20 Marks)
5 Lectures, 1 Tutorial (per week)
Unit-I
Limits of functions ($\epsilon - \delta$ approach), Sequential criterion for limits, Divergence criteria. Limit theorems, one-sided limits. Infinite limits and limit at infinity. Continuous functions, Sequential criterion for continuity, Algebra of continuous functions and theorems related to continuity of functions.

Unit-II
Discontinuity and kinds of discontinuity, Further properties of continuity, Uniform continuity, Differentiable functions, Left hand & Right hand derivatives, Algebra of differentiable functions, Caratheodory’s theorem.

Unit-III
Mean value conditions, Global and local maximum & minimum, Rolle’s theorem, Generalized mean value theorem, Cauchy mean value theorem, Lagrange’s mean value theorem and their applications, Darboux’s theorem, Indeterminant forms, Higher order derivatives (Leibnitz theorem), Taylor’s theorem and its applications to approximating functions by means of polynomials.

Unit-IV
Maxima and Minima, Taylor’s theorem with different forms of remainder, Maclaurin’s theorem, Deduction of Taylor’s theorem from mean value theorem, Taylor’s and Maclaurin’s infinite series, Taylor’s series and Maclaurin’s series expansions of exponential and trigonometric functions, $\ln(1 + x)$, $1/(ax + b)$ and $(1 + x)^n$.

Books Recommended:

Books for Reference:

C-6: GROUP THEORY (ALGEBRA-II)

Total Marks: 100-(Theory: 80 Marks+Mid-Sem: 20 Marks)
5 Lectures, 1 Tutorial (per week)

Unit-I
Symmetries of a square, Dihedral groups, Definition and examples of groups including permutation groups and quaternion groups (illustration through matrices), Elementary properties of groups.
Subgroups and examples of subgroups, Centralizer, Normalizer, Center of a group, Product of two subgroups.

Unit-II
Properties of cyclic groups, Classification of subgroups of cyclic groups. Cycle notation for permutations, Properties of permutations, Even and Odd permutations, Alternating group, Properties of cosets, Lagranges theorem and consequences including Fermats Little theorem.

Unit-III
External direct product of a finite number of groups, Normal subgroups, Factor groups, Cauchys theorem for finite abelian groups.

Unit-IV
Group homomorphisms, properties of homomorphisms, Cayleys theorem, Properties of isomorphisms, First isomorphism theorem, Second and Third isomorphism theorems (Statements only).

Book Recommended:

Books for Reference:

C-7: PARTIAL DIFFERENTIAL EQUATIONS & SYSTEMS OF ORDINARY DIFFERENTIAL EQUATIONS
(Total Marks: 100)
Part-I(Marks: 70)
04 Lectures(per week)

Unit-I

Unit-II
Formation of first order partial differential equations, Linear and non-linear partial differential equations of first order, Special types of first-order equations, Solutions of partial differential equations of first order satisfying given conditions.
Unit-III
Linear partial differential equations with constant coefficients, Equations reducible to linear partial differential equations with constant coefficients, Partial differential equations with variable coefficients, Some standard forms of variable coefficients.

Unit-IV
Laplace equation, Solution of Laplace equations by separation of variables, One-dimensional Wave equation, Solution of the Wave equation(method of separation of variables), Diffusion equation, Solution of one-dimensional diffusion equation, Method of separation of variables.

Part-II(PRACTICAL)
(Marks: 30)
List of Practical (Using any Software/MATLAB)
Practical/Lab work to be performed on a Computer.

1. To find the general solution of the non-homogeneous system of the form:
 \[
 \frac{dx}{dt} = a_1 x + b_1 y + f_1(t), \quad \frac{dy}{dt} = a_2 x + b_2 y + f_2(t)
 \]
 with given conditions.

2. Plotting the integral surfaces of a given first order PDE with initial data.

3. Solution of wave equation \[\frac{\partial^2 u}{\partial t^2} - c^2 \frac{\partial^2 u}{\partial x^2} = 0 \] for the following associated conditions:
 (a) \(u(x, 0) = \phi(x), u_t(x, 0) = \psi(x), x \in \mathbb{R}, t > 0 \).
 (b) \(u(x, 0) = \phi(x), u_t(x, 0) = \psi(x), u_x(0, t) = 0, x \in (0, \infty), t > 0 \).
 (c) \(u(x, 0) = \phi(x), u_t(x, 0) = \psi(x), u(0, t) = 0, x \in (0, \infty), t > 0 \).
 (d) \(u(x, 0) = \phi(x), u_t(x, 0) = \psi(x), u(0, t) = 0, u(1, t) = 0, 0 < x < l, t > 0 \).

4. Solution of Diffusion equation \[\frac{\partial u}{\partial t} - k^2 \frac{\partial^2 u}{\partial x^2} = 0 \] for the following associated conditions:
 (a) \(u(x, 0) = \phi(x), u(0, t) = a, u(l, t) = b, 0 < x < l, t > 0 \).
 (b) \(u(x, 0) = \phi(x), x \in \mathbb{R}, 0 < t < T \).
 (c) \(u(x, 0) = \phi(x), u(0, t) = a, x \in (0, \infty), t \geq 0 \).

Book Recommended:
 Chapters: 8 (8.1-8.3), 11, 12, 13(13.1-13.5), 15(15.1 & 15.5 only), 16(16.1 & 16.1.1 only), 17(17.1-17.3).

Books for References:
SEMESTER-IV

C-8: NUMERICAL METHODS
(Total Marks: 100)
Part-I(Marks: 70)
04 Lectures(per week)

Unit-I
Rate of convergence, Algorithms, Errors: Relative, Absolute, Round off, Truncation. Numeri-
cal solution of non-linear equations : Bisection method, Regular-Falsi method, Secant method,
Newton-Raphson method, Fixed-point Iteration method, Newton-Raphson method for multiple
roots, Aitken's Δ^2 process, Muller's method. Rate of convergence of these methods.

Unit-II
System of linear equations: Gaussian Elimination method, Gauss-Jordan method, Gauss Jacobi
method, Gauss-Seidel method and their convergence analysis, .

Unit-III
Polynomial interpolation: Existence uniqueness of interpolating polynomials, Lagrange and Newtons
divided difference interpolation, Error in interpolation, Central difference & averaging operators,
Gauss-forward and backward difference interpolation, Simple numerical methods for derivatives,
Interpolatory formulas.

Unit-IV
Numerical Integration: Some simple quadrature rules, Newton-Cotes rules, Trapezoidal rule, Simp-
sons rule, Simpsons $\frac{3}{8}$-th rule, Compound quadrature rules, Compound mid-point rule, Compound
Trapezoidal rule, Compound Simpsons rule, Gauss-Legendre 2-point & 3-point rules. Numerical
solutions of Differential Equations: Eulers method. Runge-Kutta methods of orders two, three and
four.

Part-II(PRACTICAL)
(Marks: 30)
List of Practical (Using any Software/MATLAB)
Practical/Lab work to be performed on a Computer.

1. Calculate the sum $\frac{1}{1} + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \ldots + \frac{1}{N}$.

2. To find the absolute value of an integer.

3. Enter 100 integers into an array and sort them in an ascending order.
7. Regular-Falsi Method.
8. LU decomposition Method.
10. SOR Method or Gauss-Siedel Method.
11. Lagrange Interpolation or Newton Interpolation.
12. Simpsons rule.

Note: For any of the CAS (Computer aided software) Data types—simple data types, floating data types, character data types, arithmetic operators and operator precedence, variables and constant declarations, expressions, input/output, relational operators, logical operators and logical expressions, control statements and loop statements, arrays should be introduced to the students.

Book Recommended:

1. B.P. Acharya and R.N. Das: A Course on Numerical Analysis, Kalyani Publishers, New Delhi, Ludhiana. Chapters: 0(0.2, 0.8), 1(1.8, 1.9), 2(2.1-2.4, 2.6-2.9), 3(3.1-3.4, 3.6-3.11), 5(5.1-5.3), 6(6.1-6.3, 6.5, 6.10, 6.11), 7(7.1-7.5 & 7.7).

Books for Reference:

C-9: RIEMANN INTEGRATION & SERIES OF FUNCTIONS
(ANALYSIS-III)

Total Marks: 100-(Theory: 80 Marks+Mid-Sem: 20 Marks)
5 Lectures, 1 Tutorial (per week)

Unit-I
Riemann integration, Inequalities of upper and lower sums, Riemann conditions of integrability. Riemann sum and definition of Riemann integral through Riemann sums, Equivalence of two definitions, Riemann integrability of monotone and continuous functions, Properties of the Riemann integral, Definition and integrability of piecewise continuous and monotone functions, Fundamental theorems of Calculus.

Unit-II
Improper integrals; Series and Integrals, Absolute convergence of integrals, Convergence of Beta and Gamma functions.

Unit-III
Point-wise and Uniform convergence of sequence of functions, Cauchy’s criterion & Weierstrass M-test for uniform convergence, Dedekind test, Uniform convergence and Continuity, Term by term integration of series, Term by term differentiation of series.

Unit-IV
Power series (Cauchy Hadamard Theorem), Radius of convergence, Differentiation and integration of power series, Abels Limit Theorem, Stirling’s formula, More about Taylor’s series, Weierstrass Approximation Theorem.

Books Recommended:
2. S.C. Mallik and S. Arora: Mathematical Analysis, New Age International Ltd., New Delhi, Chapters: 11(3.3, 4.3 only), 12(Restricted).

Books for Reference:
C-10: RING THEORY & LINEAR ALGEBRA (ALGEBRA-III)
Total Marks: 100-(Theory: 80 Marks+Mid-Sem: 20 Marks)
5 Lectures, 1 Tutorial (per week)

Unit-I
Definition and examples of rings, Properties of rings, Subrings, Integral domains and Fields, Characteristic of a ring, Ideal, Ideal generated by a subset of a ring, Factor rings, Operations on Ideals, Prime and Maximal ideals.

Unit-II
Ring homomorphisms, Properties of ring homomorphisms, Isomorphism Theorems I, II and III, Field of quotients.

Unit-III
Vector spaces, Subspaces, Algebra of subspaces, Quotient spaces, Linear combination of vectors, Linear span, Linear independence, Basis and Dimension, Dimension of subspaces.

Unit-IV
Linear transformations, Null space, Range, Rank and Nullity of a linear transformation, Matrix representation of a linear transformation, Algebra of linear transformations. Isomorphisms, Isomorphism theorems, Invertibility and Isomorphisms, Change of co-ordinate matrix.

Book Recommended:

Books for Reference:

SEMESTER-V
C-11: MULTIVARIATE CALCULUS (CALCULUS-II)

Total Marks: 100-(Theory:80 Marks+Mid-Sem: 20 Marks)
5 Lectures, 1 Tutorial (per week)

Unit-I
Functions of several variables, limit and continuity of functions of two variables, Partial differentiation, Tangent planes, Approximation and Differentiability, Chain rule for one and two independent parameters.

Unit-II
Directional derivatives and gradient, Maximal property of the gradient, Normal property of the gradient, Tangent planes and the normal lines, Extrema of functions of two variables, Method of Lagrange multipliers, Lagrange Multipliers, Constrained optimization problems, A geometrical interpretation.

Unit-III
Double integration over rectangular region and over non-rectangular region, Double integrals in polar co-ordinates, Triple integrals, Triple integral over a parallelepiped and solid regions, Volume by triple integrals. cylindrical and spherical co-ordinates. Change of variables in double integrals and triple integrals.

Unit-IV
Definition of vector field, Divergence and Curl, Line integrals, Applications of line integrals: Mass and Work, Fundamental theorem and path independence for line integrals.

Unit-V
Green’s theorem, Area as a line integral, Alternative forms of Green’s theorem, Normal derivatives, Surface integrals, Integrals over parametrically defined surfaces. Stokes theorem, The Divergence theorem.

Book Recommended:

Books for Reference:

C-12: PROBABILITY & STATISTICS
Total Marks: 100-(Theory: 80 Marks + Mid-Sem: 20 Marks)
5 Lectures, 1 Tutorial (per week)

Unit-I
Sample space, Probability axioms, Independent events, Conditional probability & Bayes’ theorem, Real random variables (discrete and continuous), Cumulative distribution function, Expectation of random variables, Some special expectations.

Unit-II
Multivariate distributions, Joint cumulative distribution functions, Joint probability distributions, Marginal & conditional distributions, Some probability distributions (Discrete case), Uniform distribution, Binomial distribution, Negative Binomial & Geometric distributions, Poisson distribution.

Unit-III
Some probability distributions (Continuous case), Uniform, Gamma, Exponential, Beta distributions, Normal distributions, Normal approximation to the Binomial distribution, Bivariate normal distribution.

Unit-IV
Distribution of two random variables, Expectation of function of two random variables, Moment generating functions, Conditional distributions & expectations, Correlation coefficient, Co-variance, Independent random variables, Linear regression for two variables.

Unit-V
Limit theorems, Markov’s inequality, Chebyshevs inequality, Statement and interpretation of Weak and Strong law of large numbers, Central Limit theorem for independent and identically distributed random variables with finite variance, Markov Chains: Introduction, Chapman-Kolmogorov equations.

Books Recommended:

Books for Reference:
SEMESTER-VI

C-13: METRIC SPACES & COMPLEX ANALYSIS
(ANALYSIS-IV)

Total Marks: 100-(Theory: 80 Marks+Mid-Sem: 20 Marks)
5 Lectures, 1 Tutorial (per week)

Unit-I
Metric spaces: Definition and examples, Open & Closed spheres, Neighborhoods, Interior points, Open set, Closed set, Boundary points, Limit points & isolated points, Closure of a set, Dense sets, Separable metric spaces, Sequences in metric spaces, Convergent sequences, Cauchy sequences, Complete metric spaces, Distance between sets & diameter of a set, Subspaces, Cantor’s theorem.

Unit-II
Continuous functions: Definition & characterizations, Sequential criterion and other characterizations of continuity, Uniform continuity, Homeomorphism, Connectedness, Connected subsets of \mathbb{R}, Separated sets, Disconnected sets, Contraction mappings, Banach Fixed point theorem.

Unit-III
Properties of complex numbers, Regions in the complex plane, Functions of complex variable, Mappings, Limits & Continuity of complex functions, Derivatives, Differentiation formulas, Cauchy-Riemann equations, Sufficient conditions for differentiability, Polar Co-ordinates, Analytic functions, Examples of analytic functions.

Unit-IV
Exponential function, Logarithmic function, Trigonometric function, Derivatives of these functions, Definite integrals of functions, Contours, Contour integrals and its examples, Upper bounds for moduli of contour integrals, Theorems on antiderivatives, Cauchy- Goursat theorem (statement only), Cauchy integral formula, Its extension and consequences.

Unit-V
Liouville’s theorem and the Fundamental theorem of Algebra, Convergence of sequences and series, Taylor series with examples, Laurent series (without proof) with examples, Absolute and uniform convergence of power series.

Books Recommended:

Books for Reference:

5. J.B. Conway: Functions of one complex variable, Springer International Student Edn..

C-14: LINEAR PROGRAMMING

Total Marks: 100-(Theory: 80 Marks+Mid-Sem: 20 Marks)
5 Lectures, 1 Tutorial (per week)

Unit-I
Introduction to linear programming problems(LPP), Mathematical formulation of the LPP with illustrations, Graphical method, General Linear programming problems, Canonical & standard form of LPP.

Unit-II
Theory of Simplex method, Optimality and unboundedness, the Simplex algorithm, Simplex method in tableau format, Introduction to artificial variables, Two-phase method, Big-M method and their comparisons.

Unit-III

Unit-IV

Unit-V
Games and Strategies: Introduction, Formulation of two person zero sum games, solving two person zero sum games, Maximin-Minimax principle, Games without saddle points, Games with mixed strategies, Graphical solution procedure to \((2 \times n)\) and \((m \times 2)\) games.

Book Recommended:

Books for Reference:

DISCIPLINE SPECIFIC ELECTIVES (DES)

DSE-1
Programming in C++ (Compulsory)
(Total Marks; 100)
Part-I (Marks: 70)

Introduction to structured programming: data types- simple data types, floating data types, character data types, string data types, arithmetic operators and operators precedence, variables and constant declarations, expressions, input using the extraction operator `ll` and cin, output using the insertion operator `jj` and cout, preprocessor directives, increment(++) and decrement(−) operations, creating a C++ program, input/output, relational operators, logical operators and logical expressions, if and if-else statement, switch and break statements, for, while and do-while loops and continue statement, nested control statement, value returning functions, value versus reference parameters, local and global variables, one dimensional array, two dimensional array, pointer data and pointer variables.

Book Recommended:

Books for Reference:

Part-II(PRACTICAL, Marks:30)

List of Practicals (Using any software)
Practical/Lab work to be performed on a Computer.

1. Calculate the Sum of the series \(\frac{1}{1} + \frac{1}{2} + \frac{1}{3} + \cdots + \frac{1}{N} \) for any positive integer \(N \).

2. Write a user defined function to find the absolute value of an integer and use it to evaluate the function \((-1)^n/|n|\), for \(n = -2, -1, 0, 1, 2 \).

3. Calculate the factorial of any natural number.

4. Read floating numbers and compute two averages: the average of negative numbers and the average of positive numbers.

5. Write a program that prompts the user to input a positive integer. It should then output a message indicating whether the number is a prime number.

6. Write a program that prompts the user to input the value of \(a, b \) and \(c \) involved in the equation \(ax^2 + bx + c = 0 \) and outputs the type of the roots of the equation. Also the program should outputs all the roots of the equation.

7. Write a program that generates random integer between 0 and 99. Given that first two Fibonacci numbers are 0 and 1, generate all Fibonacci numbers less than or equal to generated number.

8. Write a program that does the following:
 a. Prompts the user to input five decimal numbers.
 b. Prints the five decimal numbers.
 c. Converts each decimal number to the nearest integer.
 d. Adds these five integers.
 e. Prints the sum and average of them.

9. Write a program that uses whileloops to perform the following steps:
 a. Prompt the user to input two integers : first Num and second Num (first Num shoul be less than second Num).
 b. Output all odd and even numbers between first Num and second Num.
 c. Output the sum of all even numbers between first Num and second Num.
 d. Output the sum of the square of the odd numbers first Num and second Num.
 e. Output all uppercase letters corresponding to the numbers between first Num and second Num, if any.
10. Write a program that prompts the user to input five decimal numbers. The program should then add the five decimal numbers, convert the sum to the nearest integer, and print the result.

11. Write a program that prompts the user to enter the lengths of three sides of a triangle and then outputs a message indicating whether the triangle is a right triangle or a scalene triangle.

12. Write a value returning function smaller to determine the smallest number from a set of numbers. Use this function to determine the smallest number from a set of 10 numbers.

13. Write a function that takes as a parameter an integer (as a long value) and returns the number of odd, even, and zero digits. Also write a program to test your function.

14. Enter 100 integers into an array and sort them in an ascending/descending order and print the largest/smallest integers.

15. Enter 10 integers into an array and then search for a particular integer in the array.

17. Using arrays, read the vectors of the following type: \[A = (12345678), B = (02340156) \] and compute the product and addition of these vectors.

18. Read from a text file and write to a text file.

19. Write a function, reverseDigit, that takes an integer as a parameter and returns the number with its digits reversed. For example, the value of function reverseDigit\(12345\) is \(54321\) and the value of reverseDigit\(-532\) is \(-235\).

DSE-2
Total Marks:100-(Theory: 80 Marks+Mid-Sem: 20 Marks)
5 Lectures, 1 Tutorial(per week)
(Any one of the following)

1-DISCRETE MATHEMATICS

Unit-I
Propositional Logic, Proportional equivalences, Predicates and Quantifiers, Nested quantifiers, Rules of Inference, Methods of proof, Relations and their properties, n-ary relations and their applications, The basic counting, the Pigeon-hole principle, Generalized Permutations and Combinations.

Unit-II
Recurrence relations, Modelling with recurrence relations, Solving linear homogeneous recurrence relations with constant coefficients, Generating functions, Solving recurrence relations using generating functions, Principle of Inclusion-Exclusion & applications.

Unit-III
Partially ordered sets, Hasse diagram of partially ordered sets, maps between ordered sets, Boolean
expressions and Boolean functions, Duality principle, Lattices as ordered sets, Lattices as algebraic structures, sublattices, Boolean algebra and its properties.

Unit-IV
Graphs: Basic concepts and graph terminology, representing graphs and graph isomorphism, Cut-vertices and Cut-edges, Distance in a graph (restricted), Connectivity, Euler and Hamiltonian path, Shortest-Path problems, Planar graphs, Graph coloring.

Book Recommended:
1. Kenneth H. Rosen: Discrete Mathematics and Applications, Tata McGraw Hill Publications, Chapters: 1(1.1-1.6), 4(4.1, 4.2, 4.5), 5(5.1, 5.2, 5.5), 6(6.1, 6.2, 6.4-6.6), 7(7.1, 7.2), 8, 10(10.1, 10.2).

Books for References:

2-MATHEMATICAL MODELLING

Unit-I
Simple situations requiring Mathematical modelling. The technique of Mathematical modelling, Mathematical modelling through differential equations, linear growth and decay models, non-linear growth and decay models, compartment models, Mathematical modelling of geometrical problems through ordinary differential equations of first order.

Unit-II
Mathematical modelling in population dynamics, Mathematical modelling of epidemics through systems of ordinary differential equations of first order, compartment models through systems of ordinary differential equations, Mathematical modelling in economics through systems of ordinary differential equations of first order.

Unit-III
Mathematical models in medicine, arms race, battles and international trade in terms of systems of ordinary differential equations, Mathematical modelling of planetary motions, Mathematical modelling of circular motion and motion of satellites, mathematical modelling through linear differential equations of second order.
Unit-IV
Situation giving rise to partial differential equations models, mass balance equations: First method of getting PDE models, momentum balance equations. The second method of obtaining partial differential models, variational principles, third function, fourth method of obtaining partial differential equation models, models for traffic flow of a highway. Situation that can be modelled through graphs, mathematical models in terms of directed graphs, optimization principles and techniques, Mathematical modelling through calculus of variations.

Book Recommended:

1. J.N. Kapur: Mathematical Modelling, Chapters: 1(1.1 and 1.2), 2(2.1 to 2.4, 2.6), 3(3.1 to 3.5), 4(4.1 to 4.3), 6(6.1 to 6.6), 7(7.1 to 7.2), 9(9.1 and 9.2).

3-NUMBER THEORY

Unit-I
Divisibility theorem in integers, Primes and their distributions, Fundamental theorem of arithmetic, Greatest common divisor, Euclidean algorithms, Modular arithmetic, Linear Diophantine equation, prime counting function, statement of prime number theorem, Goldbach conjecture.

Unit-II
Introduction to congruences, Linear Congruences, Chinese Remainder theorem, Polynomial congruences, System of linear congruences, complete set of residues, Chinese remainder theorem, Fermats little theorem, Wilsons theorem.

Unit-III
Number theoretic functions, sum and number of divisors, totally multiplicative functions, definition and properties of the Dirichlet product, the Mbius inversion formula, the greatest integer function, Eulers phi-function, Eulers theorem, reduced set of residues, some properties of Eulers phi-function.

Unit-IV
Order of an integer modulo n, primitive roots for primes, composite numbers having primitive roots, Eulers criterion, the Legendre symbol and its properties, quadratic reciprocity, quadratic congruences with composite moduli.

Book Recommended:

1. D.M. Burton: Elementary Number Theory, McGraw Hill, Chapters: 2(2.1 to 2.4), 3(3.1 to 3.3), 4(4.1 to 4.4), 5(5.1 to 5.4), 6(6.1 to 6.3), 7(7.1 to 7.3), 8(8.1 to 8.2), 9(9.1 to 9.3).

Books for Reference:

4-BOOLEAN ALGEBRA & AUTOMATA THEORY

Unit-I
Definition, examples and basic properties of ordered sets, maps between ordered sets, duality principle, lattices as ordered sets, lattices as algebraic structures, sublattices, products and homomorphisms. Definition, examples and properties of modular and distributive lattices, Boolean algebras, Boolean polynomials, minimal forms of Boolean polynomials, QuinnMcCluskey method, Karnaugh diagrams, switching circuits and applications of switching circuits.

Unit-II
Introduction: Alphabets, strings, and languages. Finite Automata and Regular Languages: deterministic and non-deterministic finite automata, regular expressions, regular languages and their relationship with finite automata, pumping lemma and closure properties of regular languages.

Unit-III
Context Free Grammars and Pushdown Automata: Context free grammars (CFG), parse trees, ambiguities in grammars and languages, pushdown automaton (PDA) and the language accepted by PDA, deterministic PDA, Non- deterministic PDA, properties of context free languages; normal forms, pumping lemma, closure properties, decision properties.

Unit-IV
Turing Machines: Turing machine as a model of computation, programming with a Turing machine, variants of Turing machine and their equivalence. Undecidability: Recursively enumerable and recursive languages, undecidable problems about Turing machines: halting problem, Post Correspondence Problem, and undecidability problems About CFGs.

Books Recommended:
1-DIFFERENTIAL GEOMETRY

Unit-I

Unit-II

Unit-III
Developables: Developable associated with space curves and curveson surfaces, Minimal surfaces.

Unit-IV

Book Recommended:

Books for References

2-MECHANICS
Unit-I
Moment of a force about a point and an axis, couple and couple moment, Moment of a couple about a line, resultant of a force system, distributed force system, free body diagram, free body involving interior sections, general equations of equilibrium, two point equivalent loading, problems arising from structures, static indeterminacy.

Unit-II
Laws of Coulomb friction, application to simple and complex surface contact friction problems, transmission of power through belts, screw jack, wedge, first moment of an area and the centroid, other centers, Theorem of Pappus-Guldinus, second moments and the product of area of a plane area, transfer theorems, relation between second moments and products of area, polar moment of area, principal axes.

Unit-III
Conservative force field, conservation for mechanical energy, work energy equation, kinetic energy and work kinetic energy expression based on center of mass, moment of momentum equation for a single particle and a system of particles.

Unit-IV
Translation and rotation of rigid bodies, Chasles theorem, general relationship between time derivatives of a vector for different references, relationship between velocities of a particle for different references, acceleration of particle for different references.

Book Recommended:

Books for Reference:
2. Grant R Fowles, Analytical Mechanics, Cengage Learning India Pvt. Ltd.

3-MATHEMATICAL FINANCE

Unit-I
Basic principles: Comparison, arbitrage and risk aversion, Interest (simple and compound, discrete and continuous), time value of money, inflation, net present value, internal rate of return (calculation by bisection and Newton-Raphson methods), comparison of NPV and IRR. Bonds, bond prices and yields, Macaulay and modified duration, term structure of interest rates: spot and forward rates, explanations of term structure, running present value, floating-rate bonds, immunization, convexity, putable and callable bonds.

Unit-II
Asset return, short selling, portfolio return, (brief introduction to expectation, variance, covariance
and correlation), random returns, portfolio mean return and variance, diversification, portfolio dia-
gram, feasible set, Markowitz model (review of Lagrange multipliers for 1 and 2 constraints), Two
fund theorem, risk free assets, One fund theorem, capital market line, Sharpe index. Capital As-
set Pricing Model (CAPM), betas of stocks and portfolios, security market line, use of CAPM in
investment analysis and as a pricing formula, Jensens index.

Unit-III
Forwards and futures, marking to market, value of a forward/futures contract, replicating portfolios,
futures on assets with known income or dividend yield, currency futures, hedging (short, long, cross,
rolling), optimal hedge ratio, hedging with stock index futures, interest rate futures, swaps.

Unit-IV
Lognormal distribution, Lognormal model / Geometric Brownian Motion for stock prices, Binomial
Tree model for stock prices, parameter estimation, comparison of the models. Options, Types of
options: put / call, European / American, pay off of an option, factors affecting option prices, put
call parity.

Books Recommended:
1. David G. Luenberger, Investment Science, Oxford University Press, Delhi, 1998. Chapters:1,
 2, 3, 4, 6, 7, 8(8.5-8.8), 10(except 10.11, 10.12), 11(except 11.2 11.8).
2. John C. Hull, Options, Futures and Other Derivatives (6th Edition), Prentice-Hall India, Indian
 reprint, 2006. Chapters: 3, 5, 6, 7(except 7.10, 7.11), 8, 9.

Books for References:
 Dorling Kindersley (India) Pvt. Ltd. (Pearson Education), Delhi.
2. Grant R Fowles, Analytical Mechanics, Cengage Learning India Pvt. Ltd.

4-RING THEORY & LINEAR ALGEBRA-II

Unit-I
Polynomial rings over commutative rings, division algorithm and consequences, principal ideal do-
mains, factorization of polynomials, reducibility tests, irreducibility tests, Eisenstein criterion, unique
factorization in \(\mathbb{Z}[x] \).

Unit-II
Divisibility in integral domains, irreducibles, primes, unique factorization domains, Euclidean do-
mains.

Unit-III
Dual spaces, dual basis, double dual, transpose of a linear transformation and its matrix in the
dual basis, annihilators, Eigenspaces of a linear operator, diagonalizability, invariant subspaces and Cayley-Hamilton theorem, the minimal polynomial for a linear operator.

Unit-IV
Inner product spaces and norms, Gram-Schmidt orthogonalisation process, orthogonal complements, Bessel's inequality, the adjoint of a linear operator, Least Squares Approximation, minimal solutions to systems of linear equations, Normal and self-adjoint operators, Orthogonal projections and Spectral theorem.

Books Recommended:

Books for Reference:
(For LINEAR ALGEBRA)

(For RING THEORY)

DSE-4
PROJECT WORK/DISSERTATION (Compulsory)
Total Marks:100-(Project:75 Marks+Viva-Voce:25 Marks)
SKILL ENHANCEMENT COURSES (SEC)
(Credit: 2 each, Total Marks:50)
SEC-1 to SEC-4

SEC-1
COMMUNICATIVE ENGLISH & WRITING SKILL (Compulsory)

SEC-2
(Any one of the following)

1-COMPUTER GRAPHICS

Development of computer Graphics: Raster Scan and Random Scan graphics storages, displays processors and character generators, colour display techniques, interactive input/output devices. Points, lines and curves: Scan conversion, line-drawing algorithms, circle and ellipse generation, conic-section generation, polygon filling anti aliasing. Two-dimensional viewing: Coordinate systems, linear transformations, line and polygon clipping algorithms.

Books Recommended:

2-LOGIC & SETS

Books Recommended:

3-COMBINATORIAL MATHEMATICS

Basic counting principles, Permutations and Combinations (with and without repetitions), Binomial theorem, Multinomial theorem, Counting subsets, Set-partitions, Stirling numbers Principle of Inclusion and Exclusion, Derangements, Inversion formulae Generating functions: Algebra of formal power series, Generating function models, Calculating generating functions, Exponential generating functions. Recurrence relations: Recurrence relation models, Divide and conquer relations, Solution of recurrence relations, Solutions by generating functions. Integer partitions, Systems of distinct representatives.

Books Recommended:

4-INFORMATION SECURITY

Books Recommended:

GENERIC ELECTIVES (Interdisciplinary)
(04 Papers, 02 papers each from two Allied disciplines)
(Credit: 06 each, Marks:100)
GE-1 to GE-4

GE-1 : CALCULUS & ORDINARY DIFFERENTIAL EQUATIONS
Total Marks:100-(Theory: 80 Marks + Mid-Sem: 20 Marks)

Unit-I
Curvature, Asymptotes, Tracing of Curves (Cartenary, Cycloid, Folium of Descartes), Rectification, Quadrature, Elementary ideas about Sphere, Cones, Cylinders and Conicoids.

Unit-II
Review of limits, continuity and differentiability of functions of one variables and their properties, Limit and Continuity of functions of several variables, Partial derivatives, Partial derivatives of higher orders, Homogeneous functions, Change of variables, Mean value theorem, Taylors theorem and Maclaurins theorem for functions of two variables (statements & applications).

Unit-III
Maxima and Minima of functions of two and three variables, Implicit functions, Lagranges multipliers (Formulae & its applications), Concepts of Multiple integrals & its applications.

Unit-IV
Ordinary Differential Equations of order one and degree one (variables separable, homogeneous, exact and linear). Equations of order one but higher degree. Second order linear equations with constant coefficients, homogeneous forms, Second order equations with variable coefficients, Variation of parameters.

Books Recommended:

Books for Reference:

5. G. Dennis Zill: A First Course in Differential Equations with Modelling Applications, Cengage Learning India Pvt. Ltd.

GE-2: LINEAR ALGEBRA, ABSTRACT ALGEBRA & NUMERICAL ANALYSIS

Total Marks:100-(Theory: 80 Marks+Mid-Sem: 20 Marks)

Unit-I
Vector space, Subspace, Span of a set, Linear dependence and Independence, Dimensions and Basis. Linear transformations, Range, Kernel, Rank, Nullity, Inverse of a linear map, Rank-Nullity theorem.

Unit-II

Unit-III
Group Theory: Definition and examples, Subgroups, Normal subgroups, Cyclic groups, Cosets, Quotient groups, Permutation groups, Homomorphism. Elementary ideas about Rings, Field (definitions, statements, and examples only).

Unit-IV

Books Recommended:

1. V. Krishnamurty, V. P. Mainra, J. L. Arora: An introduction to Linear Algebra, Affiliated East-West Press Pvt. Ltd., New Delhi, Chapters: 3, 4(4.1 to 4.7), 5(except 5.3), 6(6.1, 6.2, 6.5, 6.6, 6.8), 7(7.4 only).

3. B.P. Acharya and R.N. Das: A Course on Numerical Analysis, Kalyani Publishers, New Delhi, Ludhiana. Chapters: 1, 2(2.1 to 2.4, 2.6, 2.8, 2.9), 3(3.1 to 3.4), 4(4.1, 4.2), 5(5.1- 5.3), 6(6.1-6.3, 6.10, 6.11).

Books for References:

5. Gilbert Strang: Linear Algebra & its Applications, Cengage Learning India Pvt. Ltd.

MATHEMATICS(PASS)

C-1A: CALULCUS & ANALYTICAL GEOMETRY
(Credit: 06, Marks:100)
Theory:80 Marks+Mid-Sem:20 Marks
5 Lectures, 1 Tutorial (per week).

Unit-I
Limit and Continuity (and definition), Types of discontinuities, Differentiability of functions, Successive differentiation, Leibnitzs theorem, Partial differentiation, Eulers theorem on homogeneous functions.

Unit-II

Unit-III
Rolles theorem, Mean Value theorems, Taylors theorem with Lagranges and Cauchys forms of remainder, Taylors series, Maclurins series of sin x, cos x, ex, log(1+x), (1+x)m, Maxima and Minima, Indeterminate forms.

Unit-IV
Sphere, Cones and Cylinders, Conicoid.

Books Recommended:

Books for References:

C-1B: DIFFERENTIAL EQUATIONS
(Credit: 06, Marks:100)
Theory:80 Marks+Mid-Sem:20 Marks
5 Lectures, 1 Tutorial (per week per student).

Unit-I

Unit-II

Unit-III

Unit-IV
Classification of second order partial differential equations into elliptic, parabolic and hyperbolic through illustrations only.

Book Recommended:
Chapters:1, 2(2.1 to 2.7), 3, 4(4.1 to 4.7), 5, 11, 12, 13(13.1-13.5).

Books for References:
3. G. Dennis Zill-A First Course in Differential Equations with Modelling Applications, Cengage Learning India Pvt. Ltd.

C-1C: REAL ANALYSIS
(Credit: 06, Marks:100)
Theory:80 Marks+Mid-Sem:20 Marks
(5 Lectures, 1 Tutorial (per week per student).
Unit-I
Finite and infinite sets, examples of countable and uncountable sets. Real line, bounded sets, suprema and infima, completeness property of R, Archimedean property of R, intervals. Concept of cluster points and statement of Bolziano-Weierstrass theorem.

Unit-II
Theorem on limits, order preservation and squeeze theorem, monotone sequences and their convergence (monotone convergence theorem without proof).

Unit-III
Infinite series. Cauchy convergence criterion for series, positive term series, geometric series, comparison test, convergence of p-series, Root test, Ratio test, alternating series, Leibnitzs test (Tests of Convergence without proof). Definition and examples of absolute and conditional convergence.

Unit-IV
Sequences and series of functions, Pointwise and uniform convergence. Mn-test, M-test, Statements of the results about uniform convergence, differentiability and integrability of functions, Power series and radius of convergence.

Book Recommended:
G. Das and S. Pattanayak-Fundamentals of Mathematics Analysis, TMH Publishing Co., Chapters: 2(2.1 to 2.4, 2.5 to 2.7), 3(3.2, 3.3, except proofs of Thm 2 Thm 3, 3.4), 4(4.1 to 4.7, 4.10, 4.11), 5, 6(6.1 to 6.7, 6.9), 7(7.1 to 7.4, 7.6), 8(8.1-8.6), 9(9.1-9.7).

Books for References:

C-1D: ALGEBRA
(Credit: 06, Marks:100)
Theory:80 Marks+Mid-Sem:20 Marks
5 Lectures, 1 Tutorial (per week per student).

Unit-I
Equivalence relations, Functions, Composition of functions, Invertible functions, One to one correspondence and cardinality of a set, Well-ordering property of positive integers, Division algorithm, Divisibility and Euclidean algorithm, Congruence relation between integers, Principles of Mathematical Induction, statement of Fundamental Theorem of Arithmetic.

Unit-II
Definition and examples of groups, examples of abelian and non-abelian groups, the group Zn of
integers under addition modulo \(n \) and the group \(U(n) \) of units under multiplication modulo \(n \). Cyclic groups from number systems, complex roots of unity, circle group, the general linear group \(\text{GL}_n(n,\mathbb{R}) \), groups of symmetries of (i) an isosceles triangle, (ii) an equilateral triangle, (iii) a rectangle, and (iv) a square, the permutation group \(\text{Sym}(n) \), Group of quaternions.

Unit-III
Subgroups, cyclic subgroups, the concept of a subgroup generated by a subset and the commutator subgroup of group, examples of subgroups including the center of a group. Cosets, Index of subgroup, Lagrange’s theorem, order of an element, Normal subgroups: their definition, examples, and characterizations, Quotient groups.

Unit-IV
Definition and examples of rings, examples of commutative and non-commutative rings: rings from number systems, \(\mathbb{Z}_n \) the ring of integers modulo \(n \), ring of real quaternions, rings of matrices, polynomial rings, and rings of continuous functions. Subrings and ideals, Integral domains and fields, examples of fields: \(\mathbb{Z}_p, \mathbb{Q}, \mathbb{R}, \) and \(\mathbb{C} \). Field of rational functions.

Books Recommended:

1. Edgar G. Goodaire and Michael M. Parmenter, Discrete Mathematics with Graph Theory, 3rd Ed., Pearson Education (Singapore) P. Ltd., Indian Reprint, 2005. Chapters: 2(2.4), 3,4(4.1-4.1.6, 4.2-4.2.11, 4.4(4.1-4.4.8),4.3-4.3.9, 5(5.1-5.1.4).

DISCIPLINE SPECIFIC ELECTIVE COURSES (DSE)
(Credit: 06 each, Marks: 100)
Theory: 80 Marks + Mid-Sem.: 20 Marks
5 Lectures, 1 Tutorial (per week per student)

DSE-A (Any one of the following)

1. LINEAR ALGEBRA

Unit-I
Vector spaces, subspaces, algebra of subspaces, quotient spaces, linear combination of vectors, linear span, linear independence, basis and dimension, dimension of subspaces.

Unit-II
Linear transformations, null space, range, rank and nullity of a linear transformation, matrix representation of a linear transformation, algebra of linear transformations.

Unit-III
Dual Space, Dual Basis, Double Dual, Eigen values and Eigen vectors, Characteristic Polynomial.

Unit-IV
Isomorphisms, Isomorphism theorems, invertibility and isomorphisms, change of coordinate matrix.

Book Recommended:

Books for References:

2. MECHANICS

Unit-I
Conditions of equilibrium of a particle and of coplanar forces acting on a rigid Body, Laws of friction.

Unit-II
Problems of equilibrium under forces including friction, Centre of gravity, Work and potential energy.
Unit-III
Velocity and acceleration of a particle along a curve: radial and transverse components (plane curve), tangential and normal components (space curve).

Unit-IV
Newtons Laws of motion, Simple harmonic motion, Simple Pendulum, Projectile Motion.

Books Recommended:

Books for References:
2. Grant R Fowles-Analytical Mechanics, Cengage Learning India Pvt. Ltd..

3. MATRICES

Unit-I
$\mathbb{R}, \mathbb{R}^2, \mathbb{R}^3$ as vector spaces over \mathbb{R}. Standard basis for each of them. Concept of Linear Independence and examples of different bases. Subspaces of $\mathbb{R}^2, \mathbb{R}^3$.

Unit-II
Translation, Dilation, Rotation, Reflection in a point, line and plane. Matrix form of basic geometric transformations. Interpretation of eigen values and eigen vectors for such transformations and eigen spaces as invariant subspaces.

Unit-III
Types of matrices. Rank of a matrix. Invariance of rank under elementary transformations. Reduction to normal form, Solutions of linear homogeneous and non-homogeneous equations with number of equations and unknowns upto four.

Unit-IV

Books Recommended:

DSE-B (Any one of the following)

1. NUMERICAL METHODS

Unit-I

Unit-II

Unit-III

Unit-IV

Books Recommended:
1. B.P. Acharya and R.N. Das-A Course on Numerical Analysis, Kalyani Publishers, New Delhi, Ludhiana. Chapters: 1, 2(2.1 to 2.4, 2.6, 2.8, 2.9), 3(3.1 to 3.4, 3.6 to 3.8, 3.10), 4(4.1, 4.2), 5(5.1, 5.2, 5.3), 6(6.1, 6.2, 6.3, 6.10, 6.11), 7(7.1, 7.2, 7.3, 7.4 &7.7).

Books for References:

2. LINEAR PROGRAMMING

Unit-I
Introduction to linear programming problem, Theory of simplex method, optimality and unboundedness, the simplex algorithm, simplex method in tableau format, introduction to arti
cial variables, twophase method, BigM method and their comparison.

Unit-II
Duality, formulation of the dual problem, primal-dual relationships, economic interpretation of the dual.

Unit-III

Unit-IV
Game theory: formulation of two person zero sum games, solving two person zero sum games, games with mixed strategies, graphical solution procedure, linear programming solution of games.

Recommended Books:

Books for Reference:

3. COMPLEX ANALYSIS

Unit-I
Limits, Limits involving the point at infinity, continuity. Properties of complex numbers, regions in the complex plane, functions of complex variable, mappings. Derivatives, differentiation formulas, Cauchy-Riemann equations, sufficient conditions for differentiability.
Unit-II

Unit-III

Unit-IV
Singularities, Classification of singularities, Laurent series expansion around a singular point, Residues and Residue theorem, Evaluation of real integrals using calculus of residues.

Books Recommended:
S. Arumgam, A. Thangapandi Issac and A. Somasundaram-Complex Analysis, SCITECH Publications(India) Pvt. Ltd., Chapters: 1, 2(except 2.8 & 2.9), 4, 6, 7, 8. Books for References:

1. S. Ponnusamy-Foundations of Complex Analysis, Alpha Science International Ltd.
3. J.B. Conway-Functions of one complex variable, Springer.
Skill Enhancement Courses (SEC)
(Credit: 02 each, Marks: 50
Theory: 40 Marks + Mid-Sem.: 10 Marks)

SEC-I
COMMUNICATIVE ENGLISH & WRITING SKILL (Compulsory)

SEC-II
(Any one of the following)

1. VECTOR CALCULUS

Books Recommended:

2. DISCRETE MATHEMATICS

Recurrence relations, Counting using recurrence relations, Solving linear homogeneous recurrence relations with constant coefficients, Generating functions, Solving recurrence relations using generating functions, Partially ordered sets, Hasse diagram of partially ordered sets, Lattices, Boolean algebra.

Graphs: Basic concepts and graph terminology, representing graphs and graph isomorphism. Distance in a graph, Cut-vertices and Cut-edges, Connectivity, Euler and Hamiltonian path.

Books Recommended:

Kenneth H. Rosen- Discrete Mathematics and Applications, Tata McGraw Hill Publications, Chapters: 1(1.1 to 1.5), 4(4.1, 4.2, 4.5), 6(6.1, 6.2, 6.5, 6.6), 7(7.1, 7.2), 8, 10(10.1, 10.2).

Books for References:

3. BOOLEAN ALGEBRA

Definition, examples and basic properties of ordered sets, maps between ordered sets, duality principle, maximal and minimal elements, lattices as ordered sets, complete lattices, lattices as algebraic structures, sublattices, products and homomorphisms.

Definition, examples and properties of modular and distributive lattices, Boolean algebras, Boolean polynomials, minimal forms of Boolean polynomials, Quinn-McCluskey method, Karnaugh diagrams, switching circuits and applications of switching circuits.

Books Recommended:

SEC-III
(Any one of the following)

1. PROBABILITY & STATISTICS

Sample space, probability axioms, real random variables (discrete and continuous), cumulative distribution function, probability mass/density functions, mathematical expectation, moments, moment generating function, characteristic function, discrete distributions: uniform, binomial, Poisson, continuous distributions: uniform, normal, exponential.

Joint cumulative distribution function and its properties, joint probability density functions, marginal and conditional distributions, expectation of function of two random variables, conditional expectations, independent random variables.

Books Recommended:

2. MATHEMATICAL MODELLING
Simple situations requiring Mathematical modelling. The technique of Mathematical modelling, Mathematical modelling through differential equations, linear growth and decay models, non-linear growth and decay models, compartment models, Mathematical modelling of geometrical problems through ordinary differential equations of first order.

Mathematical modelling in population dynamics, Mathematical modelling of epidemics through systems of ordinary differential equations of first order, compartment models through systems of ordinary differential equations, Mathematical modelling in economics through systems of ordinary differential equations of first order, Mathematical models in medicine, arms race, battles and international trade in terms of systems of ordinary differential equations, Mathematical modelling of planetary motions, Mathematical modelling of circular motion and motion of satellites, mathematical modelling through linear differential equations of second order.

Situation giving rise to partial differential equations models, mass balance equations: First method of getting PDE models, momentum balance equations. The second method of obtaining partial differential models, variational principles, third function, fourth method of obtaining partial differential equation models, models for traffic flow of a highway. Situation that can be modelled through graphs, mathematical models in terms of directed graphs, optimization principles and techniques, Mathematical modelling through calculus of variations.

Book Recommended: J.N. Kapur-Mathematical Modelling, Chapters: 1(1.1 and 1.2), 2(2.1 to 2.4, 2.6), 3(3.1 to 3.5), 4(4.1 to 4.3), 6(6.1 to 6.6), 7(7.1 to 7.2), 9(9.1 and 9.2).

3. FINANCIAL MATHEMATICS

Introduction: A simple market model, Risk free assets (time value of money, money market), Risky assets (Dynamics od stock price, Binomial free model), Discrete time model markets, Portfolio management (Risk, two or more securities, Capital assets pricing models).

Forward and future contracts, Options (General properties), Option pricing, Financial engineering (Heading Option Position).

Books for References

SEC-IV
(Any one of the following)
1. LOGIC & SETS

Introduction, propositions, truth table, negation, conjunction and disjunction. Implications, biconditional propositions, converse, contra positive and inverse propositions and precedence of logical operators. Propositional equivalence: Logical equivalences. Predicates and quantifiers: Introduction, Quantifiers, Binding variables and Negations.

Difference and Symmetric difference of two sets. Set identities, Generalized union and intersections. Relation: Product set, Composition of relations, Types of relations, Partitions, Equivalence Relations with example of congruence modulo relation.

Books Recommended:

2. TRANSPORTATION & GAME THEORY

Books Recommended:

3. NUMBER THEORY

Divisibility theorem in integers, Primes and their distributions, Fundamental theorem of arithmetic, Greatest common divisor, Euclidean algorithms, Modular arithmetic, Solutions of Linear Diophantine
equations.

Introduction to congruences, Linear Congruences, Chinese Remainder theorem, Polynomial congruences, System of linear congruences, Number theoretic functions (Euler's phi function, Multiplicative functions, Divisor functions, Sum of divisor functions, Mobius mu functions etc.).

Fermat's little theorem, Wilson's theorem, Euler's generalisation of Fermat's theorem, Primitive roots and indices, Quadratic residues, Legendre and Jacobi symbol.

Book Recommended:
D.M. Burton-Elementary Number Theory, McGraw Hill, Chapters: 2(2.1 to 2.4), 3(3.1 to 3.3), 4(4.1 to 4.4), 5(5.1 to 5.4), 6(6.1 to 6.3), 7(7.1 to 7.3), 8(8.1 to 8.2), 9(9.1 to 9.3).

Books for References:
PHYSICS(HONOURS)

SEMESTER-I

C-I: MATHEMATICAL PHYSICS-I
(Credits: Theory-04, Practicals-02)
Marks:100 (Theory:70, Practical: 30)
Theory: 40 Classes (1 hr. duration)

The emphasis of course is on applications in solving problems of interest to physicists. The students are to be examined entirely on the basis of problems, seen and unseen.

UNIT-I
Calculus: Calculus of functions of more than one variable: Partial derivatives, exact and inexact differentials, Integrating factor, with simple illustration. Constrained Maximization using Lagrange Multipliers. (4 Lectures)

UNIT-II
Orthogonal Curvilinear Coordinates: Orthogonal Curvilinear Coordinates, Derivation of Gradient, Divergence, Curl and Laplacian in Cartesian, Spherical and Cylindrical Coordinate Systems. Comparison of velocity and acceleration in cylindrical and spherical coordinate system. (7 Lectures)
Dirac Delta function and its properties: Definition of Dirac delta function. Representation as limit of a Gaussian function and rectangular function. Properties of Dirac delta function. (3 Lectures)

UNIT-III

UNIT-IV

Reference Books:

PHYSICS LAB-C:I
20 Classes (2 hrs. duration)

The aim of this Lab is not just to teach computer programming and numerical analysis but to emphasize its role in solving problems in Physics.

- Highlights the use of computational methods to solve physical problems.
- The course will consist of lectures (both theory and practical) in the Lab.
- Evaluation done not on the programming but on the basis of formulating the problem.
- Aim at teaching students to construct the computational problem to be solved.
- Students can use any one operating system Linux or Microsoft Windows.
<table>
<thead>
<tr>
<th>Topics</th>
<th>Description with Applications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction and Overview</td>
<td>Computer architecture and organization, memory and Input/output devices.</td>
</tr>
<tr>
<td>Basics of scientific computing</td>
<td>Binary and decimal arithmetic, Floating point numbers, algorithms, Sequence, Selection and Repetition, single and double precision arithmetic, underflow & overflow emphasize the importance of making equations in terms of dimensionless variables, Iterative methods.</td>
</tr>
<tr>
<td>Errors and error Analysis</td>
<td>Truncation and round off errors, Absolute and relative errors, Floating point computations.</td>
</tr>
<tr>
<td>Programs</td>
<td>Sum & average of a list of numbers, largest of a given list of numbers and its location in the list, sorting of numbers in ascending descending order, Binary search.</td>
</tr>
<tr>
<td>Random number generation</td>
<td>Area of circle, area of square, volume of sphere, value of π.</td>
</tr>
</tbody>
</table>

Referred Books:

C-2: MECHANICS

(Credits: Theory-04, Practicals-02)
Marks: 100 (Theory: 70, Practical: 30)
Theory: 40 Classes (1 hr. duration)
UNIT-I
UNIT-II
Elasticity: Relation between Elastic constants. Twisting torque on a Cylinder or Wire. (3 Lectures)
Fluid Motion: Kinematics of Moving Fluids: Poiseuilles Equation for Flow of a Liquid through a Capillary Tube . (3 Lectures)
Oscillations: SHM: Simple Harmonic Oscillations. Differential equation of SHM and its solution. Kinetic energy, potential energy, total energy and their time-average values. Damped oscillation. Forced oscillations: Transient and steady states; Resonance, sharpness of resonance; power dissipation and Quality Factor. (5 Lectures)
UNIT-III
Gravitation and Central Force Motion: Law of gravitation. Gravitational potential energy. Inertial and gravitational mass. Potential and field due to spherical shell and solid sphere. (3 Lectures)
UNIT-IV
Reference Books:
 (Additional Books for Reference)

PHYSICS LAB-C:II
20 Classes (2 hrs. duration)

1. To study the random error in observations.
2. To determine the height of a building using a Sextant.
3. To study the Motion of Spring and calculate (a) Spring constant, (b) g and (c) Modulus of rigidity.
4. To determine the Moment of Inertia of a Flywheel.
5. To determine g and velocity for a freely falling body using Digital Timing Technique
7. To determine the Young’s Modulus of a Wire by Optical Lever Method.
8. To determine the Modulus of Rigidity of a Wire by Maxwells needle. 9. To determine the elastic Constants of a wire by Searles method.
9. To determine the value of g using Bar Pendulum.
10. To determine the value of g using Katers Pendulum

Reference Books:
1. Advanced Practical Physics for students, B. L. Flint and H.T. Worsnop, 1971, AsiaPublishing House
3. A Text Book of Practical Physics, I.Prakash & Ramakrishna, 11th Edn, 2011, Kitab Mahal
SEMESTER-II

C-3: ELECTRICITY AND MAGNETISM

(Credits: Theory-04, Practicals-02)
Marks:100 (Theory:70, Practical: 30)
Theory: 40 Classes (1 hr. duration)

UNIT-I
Electric Field and Electric Potential: Electric field: Electric field lines. Electric flux. Gauss Law with applications to charge distributions with spherical, cylindrical and planar symmetry. (3 Lectures)

UNIT-II

UNIT-III

UNIT-IV
Network theorems: Ideal Constant-voltage and Constant-current Sources. Network Theorems:
Thevenin theorem, Norton theorem, Superposition theorem, Reciprocity theorem, Maximum Power Transfer theorem. Growth & decay of currents in RC, RL, and LCR Series circuits for DC. (5 Lectures)

Reference Books:
2. Electricity and Magnetism, Edward M. Purcell, 1986 McGraw-Hill Education

PHYSICS LAB-C:III
20 Classes (2 hrs. duration)
1. Use a Multimeter for measuring (a) Resistances, (b) AC and DC Voltages, (c) DC Current, (d) Capacitances, and (e) Checking electrical fuses.
2. To study the characteristics of a series RC Circuit.
3. To determine an unknown Low Resistance using Potentiometer.
4. To determine an unknown Low Resistance using Carey Fosters Bridge.
5. To compare capacitances using DeSautys bridge.
6. Measurement of field strength B and its variation in a solenoid (determine dB/dx)
7. To verify the Thevenin and Norton theorems.
8. To verify the Superposition, and Maximum power transfer theorems.
9. To determine self inductance of a coil by Andersons bridge.
10. To study response curve of a Series LCR circuit and determine its (a) Resonant frequency, (b) Impedance at resonance, (c) Quality factor Q, and (d) Band width.
11. To study the response curve of a parallel LCR circuit and determine its (a) Antiresonant frequency and (b) Quality factor Q.
12. Measurement of charge and current sensitivity and CDR of Ballistic Galvanometer
15. To determine the mutual inductance of two coils by Absolute method.

Reference Books:

1. Advanced Practical Physics for students, B.L. Flint and H.T. Worsnop, 1971, Asia Publishing House
2. A Text Book of Practical Physics, I.Prakash & Ramakrishna, 11th Ed., 2011, Kitab Mahal

C-4: WAVES AND OPTICS
(Credits: Theory-04, Practicals-02)
Marks:100 (Theory:70, Practical: 30)
Theory: 40 Classes (1 hr. duration)

UNIT-I

UNIT-II
Superposition of two perpendicular Harmonic Oscillations: Graphical and Analytical Methods. Lissajous Figures (1:1 and 1:2) and their uses. Superposition of N harmonic waves. (3 Lectures)

UNIT-III
Interference: Interference in Thin Films: parallel and wedge-shaped films. Fringes of equal inclination (Haidinger Fringes); Fringes of equal thickness (Fizeau Fringes). Newtons Rings: Measurement of wavelength and refractive index. (5 Lecturers)
Interferometer: Michelson Interferometer-(1) Idea of form of fringes (No theory required), (2) Determination of Wavelength, (3) Wavelength Difference, (4) Refractive Index, and (5) Visibility of Fringes. Fabry-Perot interferometer. . (5 Lectures)

UNIT-IV

Reference Books:

8. Geometrical and Physical Optics R.S. Longhurst, Orient Blackswan, 01-Jan-1986
10. Optics, E. Hecht (Pearson India)

PHYSICS LAB-C:IV
20 Classes (2 hrs. duration)

1. To determine the frequency of an electric tuning fork by Meldes experiment and verify 2 T law.
2. To investigate the motion of coupled oscillators.
3. To study Lissajous Figures.
4. Familiarization with: Schuster’s focusing; determination of angle of prism.
5. To determine refractive index of the Material of a prism using sodium source.
6. To determine the dispersive power and Cauchy constants of the material of a prism using mercury source.
7. To determine the wavelength of sodium source using Michelsons interferometer.
8. To determine wavelength of sodium light using Fresnel Biprism.
10. To determine the thickness of a thin paper by measuring the width of the interference fringes produced by a wedge-shaped Film.
11. To determine wavelength of (1) Na source and (2) spectral lines of Hg source using plane diffraction grating.

12. To determine dispersive power and resolving power of a plane diffraction grating.

Reference Books:

1. Advanced Practical Physics for students, B.L. Flint and H.T. Worsnop, 1971, Asia Publishing House
2. A Text Book of Practical Physics, I. Prakash & Ramakrishna, 11th Ed., 2011, Kitab Mahal

SEMESTER-III

C-5: MATHEMATICAL PHYSICS-II
(Credits: Theory-04, Practicals-02)
Marks: 100 (Theory: 70, Practical: 30)
Theory: 40 Classes (1 hr. duration)

The emphasis of the course is on applications in solving problems of interest to physicists. Students are to be examined on the basis of problems, seen and unseen.

UNIT-I

UNIT-II

UNIT-III
Some Special Integrals: Beta and Gamma Functions and Relation between them. Expression of Integrals in terms of Gamma Functions. Error Function (Probability Integral). (5 Lectures)
UNIT-IV

Reference Books:

10. Mathematical Physics-Goswami (CENGAGE Learning) 2014
12. Mathematics for Physicists, P. Dennery and A. Krzywicki Dover)

PHYSICS LAB-C:V

20 Classes (2 hrs. duration)

The aim of this Lab is to use the computational methods to solve physical problems. Course will consist of lectures (both theory and practical) in the Lab. Evaluation done not on the programming but on the basis of formulating the problem.
<table>
<thead>
<tr>
<th>Topics</th>
<th>Description with Applications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction to Numerical computation software Scilab</td>
<td>Introduction to Scilab, Advantages and disadvantages, Scilab environment, Command window, Figure window, Edit window, Variables and arrays, Initialising variables in Scilab, Multidimensional arrays, Subarray, Special values, Displaying output data, data file, Scalar and array operations, Hierarchy of operations, Built in Scilab functions, Introduction to plotting, 2D and 3D plotting (2), Branching Statements and program design, Relational & logical operators, the while loop, for loop, details of loop operations, break & continue statements, nested loops, logical arrays and vectorization (2) User defined functions, Introduction to Scilab functions, Variable passing in Scilab, optional arguments, preserving data between calls to a function, Complex and Character data, string function, Multidimensional arrays (2) an introduction to Scilab file processing, file opening and closing, Binary I/o functions, comparing binary and formatted functions, Numerical methods and developing the skills of writing a program (2).</td>
</tr>
<tr>
<td>Curve fitting, Least square fit, Goodness of fit, standard deviation</td>
<td>Ohms law to calculate R, Hookes law to calculate spring constant</td>
</tr>
<tr>
<td>Solution of Linear system of equations by Gauss elimination method and Gauss Seidal method. Diagonalization of matrices, Inverse of a matrix, Eigen vectors, eigen values problems.</td>
<td>Solution of mesh equations of electric circuits (3 meshes) Solution of coupled spring mass systems (3 masses)</td>
</tr>
</tbody>
</table>
Solution of ODE
First order Differential equation
Euler, modified Euler and
Runge-Kutta second order methods
Second order differential equation.
Fixed difference method.

First order differential equation
• Radioactive decay
• Current in RC, LC circuits with DC source
• Newtons law of cooling
• Classical equations of motion
Second order Differential Equation
• Harmonic oscillator (no friction)
• Damped Harmonic oscillator
• Over damped
• Critical damped
• Oscillatory
• Forced Harmonic oscillator
• Transient and
• Steady state solution
• Apply above to LCR circuits also.

Reference Books:

3. First course in complex analysis with applications, D.G. Zill and P.D. Shanahan, 1940, Jones & Bartlett
7. Scilab Image Processing: Lambert M. Surhone. 2010 Betascript Publishing

C-6: THERMAL PHYSICS
(Credits: Theory-04, Practicals-02)
Marks:100 (Theory:70, Practical: 30)
Theory: 40 Classes (1 hr. duration)

UNIT-I

UNIT-II

Maxwells Thermodynamic Relations: Derivations and applications of Maxwells Relations, Maxwells Relations:(1) Clausius Clapeyron equation, (2) Values of Cp-Cv, (3) Tds Equations, (4) Joule-Kelvin coefficient for Ideal and Van der Waal Gases, (5) Energy equations, (6) Change of Temperature during Adiabatic Process. (5 Lectures)

UNIT-III

Kinetic Theory of Gases

Molecular Collisions: Mean Free Path. Collision Probability. Estimates of Mean Free Path. Transport Phenomenon in Ideal Gases: (1) Viscosity, (2) Thermal Conductivity and (3) Diffusion. Brownian motion and its Significance. (4 Lectures)

UNIT-IV

Reference Books:

8. Thermal Physics– C. Kittel and H. Kroemer (McMillan Education India) 2010

PHYSICS LAB-C:VI
20 Classes (2hr duration)

1. To determine Mechanical Equivalent of Heat, J, by Callender and Barnes constant flow method.

2. To determine the Coefficient of Thermal Conductivity of Cu by Searles Apparatus.

3. To determine the Coefficient of Thermal Conductivity of Cu by Angstroms Method.

4. To determine the Coefficient of Thermal Conductivity of a bad conductor by Lee and Charltons disc method.

5. To determine the Temperature Coefficient of Resistance by Platinum Resistance Thermometer (PRT).

6. To study the variation of Thermo-Emf of a Thermocouple with Difference of Temperature of its Two Junctions.

7. To calibrate a thermocouple to measure temperature in a specified Range using (1) Null Method, (2) Direct measurement using Op-Amp difference amplifier and to determine Neutral Temperature.

8. To determine J by Caloriemeter.

Reference Books:

1. Advanced Practical Physics for students, B. L. Flint and H.T. Worsnop, 1971, Asia Publishing House

2. A Text Book of Practical Physics, I.Prakash & Ramakrishna, 11th Ed., 2011, Kitab Mahal

C-7: DIGITAL SYSTEMS AND APPLICATIONS
(Credits: Theory-04, Practicals-02)
Marks:100 (Theory:70, Practical: 30)
Theory: 40 Classes (1 hr. duration)
UNIT-I

UNIT-II
Data processing circuits: Basic idea of Multiplexers, De-multiplexers, Decoders, Encoders. (3 Lectures)

Timers: IC 555: block diagram and applications: Astable multivibrator and Monostable multivibrator. (3 Lectures)

UNIT-III
Integrated Circuits (Qualitative treatment only): Active & Passive components. Discrete components. Wafer. Chip. Advantages and drawbacks of ICs. Scale of integration: SSI, MSI, LSI and VLSI (basic idea and definitions only). Classification of ICs. Examples of Linear and Digital ICs. (5 Lectures)

UNIT-IV
Shift registers: Serial-in-Serial-out, Serial-in-Parallel-out, Parallel-in-Serial-out and Parallel-in-Parallel-out Shift Registers (only up to 4 bits). (2 Lectures)
Counters (4 bits): Ring Counter. Asynchronous counters, Decade Counter. Synchronous Counter.(4 Lectures)

Reference Books:

PHYSICS PRACTICAL-C:VII
20 Classes (2 hrs. duration)

1. To measure (a) Voltage, and (b) Time period of a periodic waveform using CRO.
2. To test a Diode and Transistor using a Multimeter.
3. To design a switch (NOT gate) using a transistor.
4. To verify and design AND, OR, NOT and XOR gates using NAND gates.
5. To design a combinational logic system for a specified Truth Table.
6. To convert a Boolean expression into logic circuit and design it using logic gate ICs.
7. To minimize a given logic circuit.
8. Half Adder, Full Adder and 4-bit binary Adder.
9. Half Subtractor, Full Subtractor, Adder-Subtractor using Full Adder I.C.
10. To build Flip-Flop (RS, Clocked RS, D-type and JK) circuits using NAND gates.
11. To build JK Master-slave flip-flop using Flip-Flop ICs
12. To build a 4-bit Counter using D-type/JK Flip-Flop ICs and study timing diagram.
13. To make a 4-bit Shift Register (serial and parallel) using D-type/JK Flip-Flop ICs.
14. To design an astable multivibrator of given specifications using 555 Timer.
15. To design a monostable multivibrator of given specifications using 555 Timer.

Reference Books:

SEMESTER-IV

C-VIII: MATHEMATICAL PHYSICS-III
(Credits: Theory-04, Practicals-02)
Marks:100 (Theory:70, Practical: 30)
Theory: 40 Classes (1 hr. duration)

The emphasis of the course is on applications in solving problems of interest to physicists. Students are to be examined on the basis of problems, seen and unseen.

UNIT-I

UNIT-II

UNIT-III

UNIT-IV
Laplace Transforms: Laplace Transform (LT) of Elementary functions. Properties of LTs: Change of Scale Theorem, Shifting Theorem. LTs of Derivatives and Integrals of Functions, Derivatives and Integrals of LTs. LT of Unit Step function, Dirac Delta function, Periodic Functions. Convolution Theorem. Inverse LT. Application of Laplace Transforms to Differential Equations: Damped Harmonic Oscillator, Simple Electrical Circuits. (10 Lectures)

Reference Books:

7. First course in complex analysis with applications, D.G. Zill and P.D. Shanahan, 1940, Jones & Bartlett.

10. Mathematical Physics-Goswami (Cengage Learning) 2014

PHYSICS PRACTICAL-C:VIII

20 Classes (2 hrs. duration)

Scilab based simulations experiments based on Mathematical Physics problems like

1. Solve differential equations:
 (i) \(\frac{dy}{dx} = e^{-x} \) with \(y = 0 \) for \(x = 0 \).
 (ii) \(\frac{dy}{dx} + e^{-xy} = x^2 \).
 (iii) \(\frac{d^2y}{dt^2} + 2 \frac{dy}{dt} = -y \).
 (iv) \(\frac{d^2y}{dt^2} + e^{-t} \frac{dy}{dt} = -y \).

2. Dirac Delta Function: Evaluate \(\frac{1}{\sqrt{2\pi\sigma^2}} \int e^{-(x-2)^2/2\sigma^2}(x+3)dx \) for \(\sigma = 1, 0.1, 0.01 \) and show it tends to 5.

3. Fourier Series: Program to \(\sum_{n=1}^{\infty} (0.2)^n \).
 Evaluate the Fourier coefficients of a given periodic function (square wave)

4. Frobenius method and Special functions: \(\int_{-1}^{1} P_n(\mu)P_n(\mu) \ d\mu = \delta_{n,m} \). Plot \(P_n(x), J(x) \). Show recursion relation.

5. Calculation of error for each data point of observations recorded in experiments done in previous semesters (choose any two).

6. Calculation of least square fitting manually without giving weightage to error. Confirmation of least square fitting of data through computer program.

7. Evaluation of trigonometric functions e.g. \(\sin \theta \), Given Bessels function at \(N \) – points, find its value at an intermediate point. Complex analysis: Integrate \(1/(x^2 + 2) \) numerically and check with computer integration.

8. Integral transform: FFT of \(e^{-x^2} \).
Reference Books:

C-IX: ELEMENTS OF MODERN PHYSICS
(Credits: Theory-04, Practicals-02)
Marks:100 (Theory:70, Practical: 30)
Theory: 40 Classes (1 hr. duration)

UNIT-I

UNIT-II
Wave Particle Duality: de Broglie hypothesis, Experimental confirmation of matter wave, Davisson Germer Experiment, velocity of de Broglie wave, wave particle duality, Complementarity. Superposition of two waves, phase velocity and group velocity, wave packets, Gaussian Wave Packet, spatial distribution of wave packet, Localization of wave packet in time. Time development of a wave Packet; Wave Particle Duality, Complementarity. Heisenberg Uncertainty Principle, Illustration of the Principle through thought Experiments of Gamma ray microscope and electron diffraction through a slit. Estimation of ground state energy of harmonic oscillator and hydrogen atom, non existence of electron in the nucleus. Uncertainty and Complementarities. (11 Lectures)

UNIT-III
Nuclear Physics: Size and structure of atomic nucleus and its relation with atomic weight; Impossibility of an electron being in the nucleus as a consequence of the uncertainty principle. Nature of nuclear force, NZ graph, Liquid Drop model: semi-empirical mass formula and binding energy,
Nuclear Shell Model and magic numbers. Radioactivity: stability of the nucleus; Law of radioactive decay; Mean life and half-life (8 Lectures)

UNIT-IV
Alpha decay; Beta decay- energy released, spectrum and Pauli’s prediction of neutrino; Gamma ray emission, energy-momentum conservation: electron-positron pair creation by gamma photons in the vicinity of a nucleus.
Fission and fusion- mass deficit, relativity and generation of energy; Fission - nature of fragments and emission of neutrons. Nuclear reactor: slow neutrons interacting with Uranium 235; Fusion and thermonuclear reactions driving stellar energy (brief qualitative discussions). (10 Lectures)

Reference Books:
3. Introduction to Quantum Mechanics, David J. Griffith, 2005, Pearson Education.
6. Modern Physics, Bernstein, Fishbane and Gasiorowicz (Pearson India) 2010
 (Additional Books for Reference)
14. Modern Physics —Murugesan and Sivaprasad (S. Chand Higher Academics)
15. Physics of Atoms and Molecules Bransden (Pearson India) 2003

PHYSICS PRACTICAL-C:IX
20 Classes (2 hrs. duration)
1. Measurement of Planck’s constant using black body radiation and photo-detector
2. Photo-electric effect: photo current versus intensity and wavelength of light; maximum energy of photo-electrons versus frequency of light

3. To determine work function of material of filament of directly heated vacuum diode.

4. To determine the Planck's constant using LEDs of at least 4 different colours.

5. To determine the wavelength of H-alpha emission line of Hydrogen atom.

6. To determine the ionization potential of mercury.

7. To determine the absorption lines in the rotational spectrum of Iodine vapour.

8. To determine the value of e/m by (a) Magnetic focusing or (b) Bar magnet.

9. To setup the Millikan oil drop apparatus and determine the charge of an electron.

10. To show the tunneling effect in tunnel diode using I-V characteristics.

11. To determine the wavelength of laser source using diffraction of single slit.

12. To determine the wavelength of laser source using diffraction of double slits.

13. To determine (1) wavelength and (2) angular spread of He-Ne laser using plane diffraction grating

Reference Books:

1. Advanced Practical Physics for students, B.L. Flint and H.T. Worsnop, 1971, Asia Publishing House

3. A Text Book of Practical Physics, I. Prakash & Ramakrishna, 11th Edn, 2011, Kitab Mahal

C-X: ANALOG SYSTEMS AND APPLICATIONS

(Credits: Theory-04, Practicals-02)
Marks:100 (Theory:70, Practical: 30)
Theory: 40 Classes (1 hr. duration)

UNIT-I

Two-terminal Devices and their Applications: (1) Rectifier Diode: Half-wave Rectifiers.
Centre-tapped and Bridge Full-wave Rectifiers, Calculation of Ripple Factor and Rectification Efficiency, (2) Zener Diode and Voltage Regulation. Principle and structure of (1) LEDs, (2) Photodiode, (3) Solar Cell. (5 Lectures)

UNIT-II
Bipolar Junction transistors: n-p-n and p-n-p Transistors. Characteristics of CB, CE and CC Configurations. Current gains α and β Relations between α and β. Load Line analysis of Transistors. DC Load line and Q-point. Physical Mechanism of Current Flow. Active, Cutoff and Saturation Regions. (5 Lectures)

UNIT:III
Coupled Amplifier: RC-coupled amplifier and its frequency response.(4 Lectures)
Feedback in Amplifiers: Effects of Positive and Negative Feedback on Input Impedance, Output Impedance, Gain, Stability, Distortion and Noise. (2 Lectures)

UNIT-IV
Operational Amplifiers (Black Box approach): Characteristics of an Ideal and Practical Op-Amp. (IC 741) Open-loop and Closed-loop Gain. Frequency Response. CMRR. Slew Rate and concept of Virtual ground. (5 Lectures)

Reference Books:

8. Electronic Devices, 7/e Thomas L. Floyd, 2008, Pearson India
9. Concept of Electronics: D.C.Tayal (Himalay Publication) 2011
14. Electricity and Electronic-D.C.Tayal (Himalaya Pub.) 2011

PHYSICS PRACTICAL-C:X
20 Classes (2 hrs. duration)

1. To study V-I characteristics of PN junction diode, and Light emitting diode.
2. To study the V-I characteristics of a Zener diode and its use as voltage regulator.
3. Study of V-I & power curves of solar cells, and find maximum power point & efficiency.
4. To study the characteristics of a Bipolar Junction Transistor in CE configuration.
5. To study the various biasing configurations of BJT for normal class A operation.
6. To design a CE transistor amplifier of a given gain (mid-gain) using voltage divider bias.
7. To study the frequency response of voltage gain of a RC-coupled transistor amplifier.
8. To design a Wien bridge oscillator for given frequency using an op-amp.
9. To design a phase shift oscillator of given specifications using BJT.
10. To study the Colpitt’s oscillator.
11. To design a digital to analog converter (DAC) of given specifications.
12. To study the analog to digital convertor (ADC) IC.
13. To design an inverting amplifier using Op-amp (741,351) for dc voltage of given gain
14. To design inverting amplifier using Op-amp (741,351) and study its frequency response
15. To design non-inverting amplifier using Op-amp (741,351) & study its frequency response
16. To study the zero-crossing detector and comparator
17. To add two dc voltages using Op-amp in inverting and non-inverting mode
18. To design a precision Differential amplifier of given I/O specification using Op-amp.
19. To investigate the use of an op-amp as an Integrator.
20. To investigate the use of an op-amp as a Differentiator.
21. To design a circuit to simulate the solution of a 1st/2nd order differential equation.

Reference Books:

SEMESTER-V

C-XI: QUANTUM MECHANICS AND APPLICATIONS
(Credits: Theory-04, Practicals-02)
Marks:100 (Theory:70, Practical: 30)
Theory: 40 Classes (1hr duration)

UNIT:I

UNIT:II
Time independent Schrodinger equation: Hamiltonian, stationary states and energy eigenvalues; expansion of an arbitrary wave function as a linear combination of energy eigen functions; General solution of the time dependent Schrodinger equation in terms of linear combinations of stationary states; Application to spread of Gaussian wave-packet for a free particle in one dimension; wave packets, Fourier transforms and momentum space wave function; Position-momentum uncertainty principle. (6 Lectures)

UNIT:III
General discussion of bound states in an arbitrary potential: continuity of wave function, boundary condition and emergence of discrete energy levels; application to one-dimensional problem-square well potential; Quantum mechanics of simple harmonic oscillator-energy levels and energy eigen functions ground state, zero point energy & uncertainty principle. One dimensional infinitely rigid box- energy eigen values and eigen functions, normalization; Quantum dot as example; Quantum mechanical scattering and tunnelling in one dimension-across a step potential & rectangular potential barrier. (14 Lectures)

UNIT-IV
Atoms in External Magnetic Fields: Normal and Anomalous Zeeman Effect. Paschen Back and Stark Effect (Qualitative Discussion only). (12 Lectures)

Reference Books:

7. Quantum Physics-S. Gasiorowicz (Wiley India) 2013

10. Basic Quantum Mechanics A.Ghatak (Mc Millan India) 2012

11. Introduction to Quantum Mechanics R. Dicke and J. Wittke

13. Introduction to Quantum Mechanics, D.J. Griffith, 2nd Ed. 2005, Pearson Education

15. Quantum Mechanics - F. Mandl (CBS) 2013

PHYSICS PRACTICAL-C:XI
20 Classes (2hr duration)
Use C/C++/Scilab for solving the following problems based on Quantum Mechanics like

1. Solve the s-wave Schrodinger equation for the ground state and the first excited state of the hydrogen atom:
 Here, m is the reduced mass of the electron. Obtain the energy eigenvalues and plot the corresponding wavefunctions. Remember that the ground state energy of the hydrogen atom is -13.6 eV. Take e = 3.795 (eV)1/2, c = 1973 (eV) and m = 0.511x106 eV/c².

2. Solve the s-wave radial Schrodinger equation for an atom:
 where m is the reduced mass of the system (which can be chosen to be the mass of an electron), for the screened coulomb potential Find the energy (in eV) of the ground state of the atom to an accuracy of three significant digits. Also, plot the corresponding wavefunction. Take e = 3.795 (eV)1/2, m = 0.511x106 eV/c², and a = 3 , 5 , 7 . In these units c = 1973 (eV). The ground state energy is expected to be above -12 eV in all three cases.
3. Solve the s-wave radial Schrödinger equation for a particle of mass m:
 For the anharmonic oscillator potential for the ground state energy (in MeV) of particle to an
 accuracy of three significant digits. Also, plot the corresponding wave function. Choose $m = 940 \text{ MeV/c}^2$, $k = 100 \text{ MeV fm}^{-2}$, $b = 0, 10, 30 \text{ MeV fm}^{-3}$ in these units, $c = 197.3 \text{ MeV fm}$. The ground state energy I expected to lie between 90 and 110 MeV for all three cases.

4. Solve the s-wave radial Schrödinger equation for the vibrations of hydrogen molecule:
 Where μ is the reduced mass of the two-atom system for the Morse potential. Find the lowest
 vibrational energy (in MeV) of the molecule to an accuracy of three significant digits. Also
 plot the corresponding wave function.
 Take: $m = 940 \times 10^6 \text{eV/C}^2$, $D = 0.755501 \text{ eV}$, $\alpha = 1.44$, $\rho = 0.131349$ Laboratory based experiments:

5. Study of Electron spin resonance- determine magnetic field as a function of the resonance
 frequency.

6. Study of Zeeman effect: with external magnetic field; Hyperfine splitting

7. To show the tunneling effect in tunnel diode using I-V characteristics.

8. Quantum efficiency of CCDs

Reference Books:

 Cambridge University Press.
3. An introduction to computational Physics, T. Pang, 2nd Edn., 2006, Cambridge Univ. Press
4. Simulation of ODE/PDE Models with MATLAB, OCTAVE and SCILAB: Scientific & Engi-

C-XII: SOLID STATE PHYSICS
 (Credits: Theory-04, Practicals-02)
 Marks: 100 (Theory: 70, Practical: 30)
 Theory: 40 Classes (1 hr. duration)

UNIT: I
Lattice with a Basis Central and Non-Central Elements. Unit Cell. Miller Indices. Types of Lattices,
Geometrical Factor. (8 Lectures)

UNIT:II

UNIT:III

UNIT-IV

Reference Books:

8. Solid State Physics S. O. Pillai (New Age Publication)
11. LASERS: Fundamentals and Applications Thyagarajan and Ghatak (McMillanIndia), 2012
PHYSICS PRACTICAL-C:XII
20 Classes (2 hrs. duration)

1. Measurement of susceptibility of paramagnetic solution (Quinck’s Tube Method)
2. To measure the Magnetic susceptibility of Solids.
3. To determine the Coupling Coefficient of a Piezoelectric crystal.
4. To measure the Dielectric Constant of a dielectric Materials with frequency
5. To determine the complex dielectric constant and plasma frequency of metal using Surface Plasmon resonance (SPR)
6. To determine the refractive index of a dielectric layer using SPR
7. To study the PE Hysteresis loop of a Ferroelectric Crystal.
8. To draw the BH curve of Fe using Solenoid & determine energy loss from Hysteresis.
9. To measure the resistivity of a semiconductor (Ge) with temperature by four-probe method (room temperature to 150 oC) and to determine its band gap.
10. To determine the Hall coefficient of a semiconductor sample.

Reference Books:

3. A Text Book of Practical Physics, I.Prakash & Ramakrishna, 11th Ed., 2011, Kitab Mahal

C-XIII: ELECTROMAGNETIC THEORY
(Credits: Theory-04, Practicals-02)
Marks:100 (Theory:70, Practical: 30)
Theory: 40 Classes (1 hr. duration)

UNIT:I

UNIT:II
EM Wave Propagation in Unbounded Media: Plane EM waves through vacuum and isotropic dielectric medium, transverse nature of plane EM waves, refractive index and dielectric constant, wave impedance. Propagation through conducting media, relaxation time, skin depth. Electrical conductivity of ionized gases, plasma frequency, refractive index, skin depth, application to propagation through ionosphere. (8 Lectures)

UNIT: III

UNIT-IV

UNIT-IV
Reference Books:

1. Introduction to Electrodynamics, D.J. Griffiths, 3rd Ed., 1998, Benjamin Cummings.
3. Introduction to Electromagnetic Theory, T.L. Chow, 2006, Jones & Bartlett Learning
7. Electricity and Magnetism — D.C Tayal (Himalaya Publication) 2014
8. Introduction to Electrodynamics-A.Z.Capri & P.V.Panat (Alpha Science) 2002
9. Optics E.Hecht, (Pearson India) (Additional Books for Reference)

Electromagnetic Theory-A. Murthy (S. Chand Publication)2014

Classical Electrodynamics, J. D. Jackson (Wiley India)

PHYSICS PRACTICAL-C:XIII

20 Classes (2 hrs. duration)

1. To verify the law of Malus for plane polarized light.

2. To determine the specific rotation of sugar solution using Polarimeter.

3. To analyze elliptically polarized Light by using a Babinets compensator.

4. To study dependence of radiation on angle for a simple Dipole antenna.

5. To determine the wavelength and velocity of ultrasonic waves in a liquid (Kerosene Oil, Xylene, etc.) by studying the diffraction through ultrasonic grating.

6. To study the reflection, refraction of microwaves

7. To study Polarization and double slit interference in microwaves.

8. To determine the refractive index of liquid by total internal reflection using Wollastons air-film.

9. To determine the refractive Index of (1) glass and (2) a liquid by total internal reflection using a Gaussian eyepiece.

10. To study the polarization of light by reflection and determine the polarizing angle for air-glass interface.

11. To verify the Stefan's law of radiation and to determine Stefan's constant.

12. To determine the Boltzmann constant using V-I characteristics of PN junction diode.

Reference Books:

3. A Text Book of Practical Physics, I.Prakash & Ramakrishna, 11th Ed., 2011, Kitab Mahal

UNIT:I

UNIT:II

UNIT:III

UNIT=IV

Reference Books:

PHYSICS PRACTICAL-C:XIV
20 Classes (2 hrs. duration)
Use C/C++/Scilab for solving the problems based on Statistical Mechanics like

1. Plot Planck's law for Black Body radiation and compare it with Weins Law and Raleigh- Jeans
 Law at high temperature (room temperature) and low temperature.

2. Plot Specific Heat of Solids by comparing (a) Dulong-Petit law, (b) Einstein distribution
 function, (c) Debye distribution function for high temperature (room temperature) and low
 temperature and compare them for these two cases

3. Plot Maxwell-Boltzmann distribution function versus temperature.

4. Plot Fermi-Dirac distribution function versus temperature.

5. Plot Bose-Einstein distribution function versus temperature.

Reference Books:

 Press.

3. Thermodynamics, Kinetic Theory and Statistical Thermodynamics, Francis W. Sears and

5. Simulation of ODE/PDE Models with MATLAB, OCTAVE and SCILAB: Scientific and En-
 978-3319067896

Discipline Specific Elective (DSE)
(4 papers including the Project)
DSE-1 to DSE-4 (6 Credits each)

CLASSICAL DYNAMICS
(Credits: Theory-05, Tutorial-01)
Theory: 50 Classes (1 hr. duration)

The emphasis of the course is on applications in solving problems of interest to physicists. Students are to be examined on the basis of problems, seen and unseen.

UNIT-I

UNIT-II

Reference Books:

UNIT-I
General Properties of Nuclei: Constituents of nucleus and their Intrinsic properties, quantitative facts about mass, radii, charge density (matter density), binding energy, average binding energy and its variation with mass number, main features of binding energy versus mass number curve, N/A plot, angular momentum, parity, magnetic moment, electric moments, nuclear excited states.

Nuclear Models: Liquid drop model approach, semi empirical mass formula and significance of its various terms, condition of nuclear stability, two nucleon separation energies, evidence for nuclear shell structure, nuclear magic numbers, basic assumption of shell model.

Radioactivity decay: (a) α- decay: basics of α-decay processes, theory of α- emission, Gamow factor, Geiger Nuttall law. (b)β-decay: energy kinematics for β-decay, positron emission, electron capture, neutrino hypothesis. (c) Elementary idea of Gamma decay.

Nuclear Reactions: Types of Reactions, Conservation Laws, kinematics of reactions, Q-value, (25 Lectures)

UNIT-II
Detector for Nuclear Radiations: Gas detectors: estimation of electric field, mobility of particle, for ionization chamber and GM Counter. Basic principle of Scintillation Detectors and construction of photo-multiplier tube (PMT). Semiconductor Detectors (Si and Ge) for charge particle and photon detection (concept of charge carrier and mobility), neutron detector.

Particle Accelerators: Van-de Graaff generator (Tandem accelerator), Linear accelerator, Cyclotron, Synchrotrons.

Particle physics: Particle interactions; basic features, types of particles and its families. Symmetries and Conservation Laws: energy and momentum, angular momentum, parity, baryon number, Lepton number, Isospin, Strangeness and charm. Elementary ideas of quarks and gluons. (25 Lectures)

Reference Books:

1. Introductory nuclear Physics by Kenneth S. Krane (Wiley India Pvt. Ltd., 2008).
4. Introduction to Elementary Particles, D. Griffith, John Wiley & Sons
8. Physics of Atoms and Molecules Bransden (Pearson India) 2003
The aim of this course is not just to teach computer programming and numerical analysis but to emphasize its role in solving problems in Physics.

- Highlights the use of computational methods to solve physical problems
- Use of computer language as a tool in solving physics problems (applications)
- Course will consist of hands on training on the Problem solving on Computers.

UNIT-I

Introduction: Importance of computers in Physics, paradigm for solving physics problems for solution. Usage of linux as an Editor. Algorithms and Flowcharts: Algorithm- Definition, properties and development. Flowchart- Concept of flowchart, symbols, guidelines, types. Examples: Cartesian to Spherical Polar Coordinates, Roots of Quadratic Equation, Sum of two matrices, Sum and Product of a finite series, calculation of $\sin(x)$ as a series, algorithm for plotting (1) lissajous figures and (2) trajectory of a projectile thrown at an angle with the horizontal.

UNIT-II

Control Statements: Types of Logic (Sequential, Selection, Repetition), Branching Statements (Logical IF, Arithmetic IF, Block IF, Nested Block IF, SELECT CASE and ELSE IF Ladder statements), Looping Statements (DO-CONTINUE, DO-ENDDO, DOWHILE, Implied and Nested DO Loops), Jumping Statements (Unconditional GOTO, Computed GOTO, Assigned GOTO) Subscripted Variables (Arrays: Types of Arrays, DIMENSION Statement, Reading and Writing Arrays), Functions and Subroutines (Arithmetic Statement Function, Function Subprogram and Subroutine), RETURN, CALL, COMMON and EQUIVALENCE Statements), Structure, Disk I/O Statements, open a file, writing in a file, reading from a file. Examples from physics problems.

Programming:
1. Exercises on syntax on usage of FORTRAN
2. To print out all natural even/ odd numbers between given limits.
3. To find maximum, minimum and range of a given set of numbers.
4. To find a set of prime numbers and Fibonacci series.
Reference Books:

2. Computer Programming in Fortran 77. V. Rajaraman (Publisher: PHI).

NANO MATERIALS & APPLICATIONS
(Credits: Theory-05, Tutorial-01)
Theory: 50 Classes (1 hr. duration)

UNIT-I
Nanoscale Systems: Length scales in physics, Nanostructures: 1D, 2D and 3D nanostructures (nanodots, thin films, nanowires, nanorods), Band structure and density of states of materials at nanoscale, Size Effects in nano systems, Quantum confinement: Applications of Schrodinger equation- Infinite potential well, potential step, potential box, quantum confinement of carriers in 3D, 2D, 1D nanostructures and its consequences.

UNIT-II

Reference books:

1. C.P. Poole, Jr. Frank J. Owens, Introduction to Nanotechnology (Wiley India Pvt. Ltd.).
UNIT-I
Building Blocks & Structure of Living State: Atoms and ions, molecules essential for life, what is life. Living state interactions: Forces and molecular bonds, electric & thermal interactions, electric dipoles, casimir interactions, domains of physics in biology.

Living State Thermodynamics: Thermodynamic equilibrium, first law of thermodynamics and conservation of energy. Entropy and second law of thermodynamics, Physics of many particle systems, Two state systems, continuous energy distribution, Composite systems, Casimir contribution of free energy, Protein folding and unfolding. (25 Lectures)

UNIT-II
Open systems and chemical thermodynamics: Enthalpy, Gibbs Free Energy and chemical potential, activation energy and rate constants, enzymatic reactions, ATP hydrolysis & synthesis, Entropy of mixing, The grand canonical ensemble, Hemoglobin.

Diffusion and transport: Maxwell-Boltzmann statistics, Ficks law of diffusion, sedimentation of Cell Cultures, diffusion in a centrifuge, diffusion in an electric field, Lateral diffusion in membranes, Navier stokes equation, low Reynolds Number Transport, Active and passive membrane transport.

Fluids: Laminar and turbulent fluid flow, Bernoullis equation, equation of continuity, venture effect, Fluid dynamics of circulatory systems, capillary action.

Bio-energetics and Molecular motors: Kinesins, Dyneins, and microtubule dynamics, Brownian motion, ATP synthesis in Mitochondria, Photosynthesis in Chloroplasts, Light absorption in biomolecules, vibrational spectra of bio-biomolecules. (25 Lectures)

Reference Books:

1. Introductory Biophysics, J. Claycomb, JQP Tran, Jones & Bartelett Publishers
2. Aspects of Biophysics, Hugh S W, John Willy and Sons.

Project Work
(Credits: 06) (Compulsory)
SKILL ENHANCEMENT COURSE
(Credit: 04 each)- SEC-1 and SEC-2

1-Communicative English and English Writing Skill(Compulsory)
(Credits: 02) Theory: 20 Classes (1 hr. duration)

2-BASIC INSTRUMENTATION SKILLS
(Credits: 02)
Theory: 20 Classes (1 hr. duration)

This course is to get exposure with various aspects of instruments and their usage through hands-on mode. Experiments listed below are to be done in continuation of the topics.

UNIT-I
Basic of Measurement: Instruments accuracy, precision, sensitivity, resolution range etc. Errors in measurements and loading effects.
Multimeter: Principles of measurement of dc voltage and dc current, ac voltage, ac current and resistance. Specifications of a multimeter and their significance.
Electronic Voltmeter: Advantage over conventional multimeter for voltage measurement with respect to input impedance and sensitivity. Principles of voltage, measurement (block diagram only). Specifications of an electronic Voltmeter/ Multimeter and their significance.
AC millivoltmeter: Type of AC millivoltmeters: Amplifier- rectifier, and rectifier- amplifier. Block diagram ac millivoltmeter, specifications and their significance.
Cathode Ray Oscilloscope: Block diagram of basic CRO. Construction of CRT, Electron gun, electrostatic focusing and acceleration (Explanation only no mathematical treatment), brief discussion on screen phosphor, visual persistence & chemical composition. Time base operation, synchronization. Front panel controls. Specifications of a CRO and their significance. Use of CRO for the measurement of voltage (dc and ac frequency, time period. Special features of dual trace, introduction to digital oscilloscope, probes. Digital storage Oscilloscope: Block diagram and principle of working. (10 Lectures)

UNIT-II
Signal Generators and Analysis Instruments: Block diagram, explanation and specifications of low frequency signal generators. pulse generator, and function generator. Brief idea for testing, specifications. Distortion factor meter, wave analysis.
Digital Multimeter: Block diagram and working of a digital multimeter. Working principle of time interval, frequency and period measurement using universal counter/ frequency counter, time-base stability, accuracy and resolution. (10 Lectures)

The test of lab skills will be of the following test items:
1. Use of an oscilloscope.

2. CRO as a versatile measuring device.

3. Circuit tracing of Laboratory electronic equipment,

4. Use of Digital multimeter/VTVM for measuring voltages

5. Circuit tracing of Laboratory electronic equipment,

7. Study the layout of receiver circuit.

8. Trouble shooting a circuit

9. Balancing of bridges

Laboratory Exercises:

1. To observe the loading effect of a multimeter while measuring voltage across a low resistance and high resistance.

2. To observe the limitations of a multimeter for measuring high frequency voltage and currents.

3. To measure Q of a coil and its dependence on frequency, using a Q- meter.

4. Measurement of voltage, frequency, time period and phase angle using CRO.

5. Measurement of time period, frequency, average period using universal counter/ frequency counter.

6. Measurement of rise, fall and delay times using a CRO.

Open Ended Experiments:

1. Using a Dual Trace Oscilloscope.

2. Converting the range of a given measuring instrument (voltmeter, ammeter).

Reference Books:

2. Performance and design of AC machines - M G Say ELBS Edn.

The aim of this course is not just to impart theoretical knowledge to the students but to provide them with exposure and hands-on learning wherever possible.

UNIT-I
Fossil fuels and Alternate Sources of energy: Fossil fuels and nuclear energy, their limitation, need of renewable energy, non-conventional energy sources. An overview of developments in Offshore Wind Energy, Tidal Energy, Wave energy systems, Ocean Thermal Energy Conversion, solar energy, biomass, biochemical conversion, biogas generation, geothermal energy tidal energy, Hydroelectricity.
Solar energy: Solar energy, its importance, storage of solar energy, solar pond, non plate collector, solar distillation, solar cooker, solar green houses, solar cell, absorption air conditioning. Need and characteristics of photovoltaic (PV) systems, PV models and equivalent circuits, and sun tracking systems. (10 Lectures)

UNIT-II
Hydro Energy: Hydropower resources, hydropower technologies, environmental impact of hydro power sources. (10 Lectures)

Reference Books:
1. Non-conventional energy sources - G.D Rai - Khanna Publishers, New Delhi
2. Solar energy - M P Agarwal - S Chand and Co. Ltd.
UNIT-I
Elementary ideas of Fourier Optics.
Concept of Spatial frequency filtering, Fourier transforming property of a thin lens. (10 Lectures)

UNIT-II
Holography
Basic principle and theory: coherence, resolution, Types of holograms, white light reflection hologram, application of holography in microscopy, interferometry, and character recognition.
Photonics: Fibre Optics
Optical fibres and their properties, Principal of light propagation through a fibre, The numerical aperture, Attenuation in optical fibre and attenuation limit, Single mode and multimode fibres, Fibre optic sensors: Fibre Bragg Grating. (10 Lectures)

Reference Books:
GENERIC ELECTIVE (GE) (Minor-Physics)
For other Departments/Disciplines-(Credit: 06 each)

GE:I-MECHANICS & PROPERTIES OF MATTER,
OSCILLATION & WAVES, THERMAL PHYSICS,
ELECTRICITY, MAGNETISM & ELECTRONICS
(Credits: Theory - 04, Practicals 02)
Theory: 40 classes (1 hr. duration each)-Full Marks: 70

UNIT-I: Mechanics & Properties of Matter
Moment of Inertia Parallel axis and perpendicular axis theorem, M.I. of a Solid sphere and Solid
cylinder, Gravitational potential and field due to a thin spherical shell and a solid sphere at external
points and internal points. Relation among elastic constants, depression at free end of a light
cantilever. Surface tension, pressure difference across a curved membrane, viscous flow, Poiseuilles
formula. (8 classes) 14 Marks

UNIT-II: Oscillation and Waves
Simple harmonic motion, damped harmonic motion, under damped, over damped and critically
damped motion, Forced vibration, Resonance. Wave equation in a medium, Velocity of Longitudinal
waves in an elastic medium and velocity of transverse wave in a stretched string. Composition of
SHM, Lissajous figures for superposition of two orthogonal simple harmonic vibrations (a) with same
frequency, (b) frequency with 2:1. (8 classes) 14 Marks

UNIT-III: Thermal Physics
Entropy, change in entropy in reversible and irreversible process, Carnot engine and its efficiency.
Carnot Theorem, Second law of thermodynamics, Kelvin-Planck, Clausius formula. Thermal con-
ductivity, differential equation for heat flow in one dimension. Maxwell thermodynamic relation
(statement only), Clausius-Clapeyron equation. Black body radiation, Planck radiation formula (No
derivation). (8 classes) 14 Marks

UNIT-IV: Electricity and Magnetism
Gauss law of electrostatics, use of Gauss law to compute electrostatic field due to a linear charge
distribution. Magnetic induction B, Lorentz force law. Biot-Savarts law, Magnetic induction due to
long straight current carrying conductor, and in the axis of a current carrying circular coil. Amperes
Circuital law, its differential form. The law of electromagnetic equations, its differential and integral
form. Maxwells electro-magnetic equations and their physical significance.
Growth and decay of currents in LR and RC circuits, time constant, alternating currents in RC, RL
and LCR circuits, impedance, power factor, resonance. (8 classes) 14 Marks

UNIT-V: Electronics
Extrinsic and intrinsic semiconductors, P-type and N-type semiconductors. PN-Junction as rectifier,
Half wave and Full wave rectifiers (Bridge type), efficiency, ripple factor, use of RC, LC, and filters,
working of PNP and NPN transistors, transistor configurations in CE and CB circuits and relation
between α and β. JFET, its operation and characteristics of V-I curve. (8 classes) 14 Marks
Reference Books:
4. Introduction to Electrodynamics D.I. Griffith (Prentice Hall of India).
5. Foundations of Electronics Chattopadhyaya and Rakshit.

GE:I LAB.
20 classes (2 hours duration each)-Full Marks: 30

1. Measurement of length (or diameter) using Vernier calipers, Screw gauge and travelling microscope.
2. To determine the moment of inertia of a fly wheel.
3. To determine the Youngs modulus Y of a wire by Searls method.
4. To determine the modulus of rigidity of a wire by Maxwells needle/Torsion Pendulum (Dynamic method).
5. To determine g by bar pendulum.
6. To determine the elastic constants of a wire by Searls method.
7. To determine the value of Y of a rubber by using travelling microscope.
8. To determine the Rigidity of modulus by static method.
9. To determine the frequency of a telescope by using Sonometer.
10. Verification of Laws of Vibration of a string by using Sonometer.
11. To compare capacitances using DeSauty bridge.
12. To determine the Law of resistance by using Foster bridge.
13. To determine the Mechanical equivalent of heat J by Callender and Barnes constants flow method.
14. To determine the J by Joules Calorimeter.
15. To determine the coefficient of viscosity of water by Capillary flow method (Poiseilles method).
16. Compare the specific heat of two liquids by method of Cooling.

Reference Books:
UNIT-I: Optics-I

UNIT-II: Optics-II and Relativity

UNIT-III: Atomic Physics

UNIT-IV: Quantum Mechanics
Heisenberg's Uncertainty relation. Time dependent Schrodinger's wave equation in one dimension and three dimensions. The physical interpretation of the wave function. Probability density and probability current density. Equation of continuity. Normalization of the Wave function, Expectation value of an observable, Ehrenfests theorem. Time independent Schrodinger's wave equation in one dimension particle in a box, energy eigen values and eigen functions.(8 classes) 14 Marks

UNIT-V: Nuclear Physics
Properties of the nucleus Charge, Size, Spin, Magnetic Moment, Mass, Mass defect, Binding energy, Packing fraction, Nuclear force, and its characteristics features. Radioactive decay laws, average life, half life, nuclear fission, nuclear fusion, Linear accelerators, and cyclotron.(8 classes) 14 Marks

Reference Books:
5. Quantum Mechanics J.L. Powel and B. Craseman.
6. Atomic and Nuclear Physics Gupta and Ghosh (Books and allied).

GE:II LAB.
20 classes (2 hours duration each)-Full Marks: 30

1. Determination of Horizontal component of Earth’s magnetic field and magnetic moment of a bar magnet using deflection and oscillation magnetometer.
2. Determination of E.C.E. of a Copper by taking 3 readings.
3. Familiarization with Schuster focusing and determination of angle of prism.
4. Determination of Refractive index of the material of a prism using Sodium light.
5. To determine the wavelength of light using plane diffraction grating.
6. To determine the wavelength of light using Newton’s ring.
7. Determination of refractive index of (a) glass and (b) liquid by using travelling microscope.
8. Determination of radius of curvature of a convex/concave mirror by using Kohlrausch’s method.
9. To determine the magnifying power of a given telescope.
10. Verification of inverse square law of magnetism by using a deflection magnetometer.
11. To draw the static characteristics of a P-N junction diode.
12. Obtain the static characteristics of a P-N-P / N-P-N transistor / Triode Valve.
13. To determine the reduction factor of a tangent Galvanometer.
14. Variation of magnetic field along the axis of a circular coil carrying current.
15. To study the characteristics of a series RC circuit.

Reference Books:
UNIT-I

Vectors: Vector algebra. Scalar and vector products. Derivatives of a vector with respect to a parameter. (2 Lectures)

Ordinary Differential Equations: 1st order homogeneous differential equations. 2nd order homogeneous differential equations with constant coefficients. (2 Lectures)

Rotational Motion: Angular velocity and angular momentum. Torque. Conservation of angular momentum. (3 Lectures)

UNIT-II

Elasticity: Hookes law - Stress-strain diagram - Elastic moduli-Relation between elastic constants - Poissons Ratio-Expression for Poissons ratio in terms of elastic constants - Work done in stretching and work done in twisting a wire - Twisting couple on a cylinder - Determination of Rigidity modulus by static torsion - Torsional pendulum-Determination of Rigidity modulus and moment of inertia - q, η and σ by Searles method. (8 Lectures)

Note: Students are not familiar with vector calculus. Hence all examples involve differentiation either in one dimension or with respect to the radial coordinate.

Reference Books:

DSC 1A-LAB: MECHANICS
20 Classes (2 hrs. duration)-Marks:30

1. Measurements of length (or diameter) using vernier caliper, screw gauge and travelling microscope.
2. To determine the Height of a Building using a Sextant.
3. To determine the Moment of Inertia of a Flywheel.
4. To determine the Young’s Modulus of a Wire by Optical Lever Method.
5. To determine the Modulus of Rigidity of a Wire by Maxwells needle.
6. To determine the Elastic Constants of a Wire by Searles method.
7. To determine g by Bar Pendulum.
8. To determine g by Katers Pendulum.
9. To study the Motion of a Spring and calculate (a) Spring Constant, (b) g.

Reference Books:

SEMESTER-II

DSC 1B: ELECTRICITY, MAGNETISM AND EMT
(Credits: Theory-04, Practicals-02)
Theory: 40 Classes (1 hr. duration)-Marks:70

UNIT-I
Vector Analysis: Scalar and Vector product, gradient, divergence, Curl and their significance, Vector Integration, Line, surface and volume integrals of Vector fields, Gauss-divergence theorem and Stoke’s theorem of vectors (statement only). (8 Lectures)
Electrostatics: Electrostatic Field, electric flux, Gauss’s theorem of electrostatics. Applications of Gauss theorem- Electric field due to point charge, infinite line of charge, uniformly charged spherical shell and solid sphere, plane charged sheet, charged conductor. Electric potential as line integral of electric field, potential due to a point charge, electric dipole, uniformly charged spherical shell and solid sphere. Calculation of electric field from potential. Capacitance of an isolated spherical conductor. Parallel plate, spherical and cylindrical condenser. Energy per unit volume in electrostatic field. Dielectric medium, Polarisation, Displacement vector. Gauss’s theorem in dielectrics. Parallel plate capacitor completely filled with dielectric. (12 Lectures)

UNIT-II
Magnetism:

Maxwell’s equations and Electromagnetic wave propagation: Equation of continuity of current, Displacement current, Maxwell’s equations, Poynting vector, energy density in electromagnetic field, electromagnetic wave propagation through vacuum and isotropic dielectric medium, transverse nature of EM waves, polarization. (10 Lectures)

Reference Books:

1. Electricity and Magnetism, Edward M. Purcell, 1986, McGraw-Hill Education
6. Electricity and Magnetism- K.K Tewari (S. Chand Higher Academics)2013
7. Electricity and Magnetism -D. C. Tayal (Himalay Pub.)2014

DSC 1B-LAB: ELECTRICITY, MAGNETISM AND EMT
20 Classes (2 hrs. duration)-Marks:30

1. To use a Multimeter for measuring (a) Resistances, (b) AC and DC Voltages, (c) DC Current, and (d) checking electrical fuses.
2. Ballistic Galvanometer:
 (i) Measurement of charge and current sensitivity
 (ii) Measurement of CDR
 (iii) Determine a high resistance by Leakage Method
To determine Self Inductance of a Coil by Rayleighs Method.

3. To compare capacitances using DeSautys bridge.

4. Measurement of field strength B and its variation in a Solenoid (Determine dB/dx)

5. To study the Characteristics of a Series RC Circuit.

6. To study a series LCR circuit and determine its (a) Resonant frequency, (b) Quality factor

7. To study a parallel LCR circuit and determine its (a) Anti-resonant frequency and (b) Quality factor Q.

8. To determine a Low Resistance by Carey Fosters Bridge.

9. To verify the Thevenin and Norton theorems.

10. To verify the Superposition and Maximum Power Transfer Theorems.

Reference Books:

3. A Text Book of Practical Physics, I.Prakash & Ramakrishna, 11th Ed.2011, Kitab Mahal

SEMESTER-III

DSC 1C: THERMAL PHYSICS AND STATISTICAL MECHANICS

(Credits: Theory-04, Practicals-02)

Theory: 40 Classes (1 hr. duration)-Marks: 70

UNIT-I

Thermodynamical Potentials: Enthalpy, Gibbs, Helmholtz and Internal Energy functions, Maxwells relations and applications - Joule-Thompson Effect, Clausius- Clapeyron Equation, Expression for (CP CV), CP/CV, TdS equations. (10 Lectures)

UNIT-II

Kinetic Theory of Gases: Derivation of Maxwells law of distribution of velocities and its experimental verification, Mean free path (Zeroth Order), Transport Phenomena: Viscosity, Conduction and Diffusion (for vertical case), Law of equipartition of energy (no derivation) and its applications to specific heat of gases; mono-atomic and diatomic gases. (10 Lectures)

Theory of Radiation: Blackbody radiation, Spectral distribution, Concept of Energy Density,
Derivation of Planck’s law, Deduction of Wiens distribution law, Rayleigh- Jeans Law, Stefan Boltzmann Law and Wiens displacement law from Plancks law. (6 Lectures)

Reference Books:

6. Thermal and Statistical Physics —M. Das , P. K. Jena and others (Sri Krishna Prakashan)
8. Thermal Physics– C. Kittel and H. Kroemer (McMillan Education India) 2010

DSC 1C-LAB: THERMAL PHYSICS AND STATISTICAL MECHANICS
20 Classes (2 hrs. duration)-Marks:30

1. To determine Mechanical Equivalent of Heat, J, by Callender and Barnes constant flow method.
3. To determine Stefans Constant.
4. To determine the coefficient of thermal conductivity of Cu by Searles Apparatus.
5. To determine the Coefficient of Thermal Conductivity of Cu by Angstroms Method.
6. To determine the coefficient of thermal conductivity of a bad conductor by Lee and Charltons disc method.
7. To determine the temperature co-efficient of resistance by Platinum resistance thermometer.
8. To study the variation of thermo emf across two junctions of a thermocouple with temperature.
9. To record and analyze the cooling temperature of an hot object as a function of time using a thermocouple and suitable data acquisition system.

Reference Books:

SEMESTER-IV

DSC 1D: WAVES AND OPTICS
(Credits: Theory-04, Practicals-02)
Theory: 40 Classes (1hr duration)-Marks: 70

UNIT-I
Fluids: Surface Tension- Synclastic and anticlastic surface - Excess of pressure - Application to spherical and cylindrical drops and bubbles - variation of surface tension with temperature - Jaegars method. Viscosity - Rate flow of liquid in a capillary tube - Poiseuilles formula - Determination of coefficient of viscosity of a liquid - Variations of viscosity of liquid with temperature- lubrication. (6 Lectures)

Sound: Simple harmonic motion - forced vibrations and resonance - Fouriers Theorem - Application to saw tooth wave and square wave - Intensity and loudness of sound - Decibels - Intensity levels - musical notes - musical scale. Acoustics of buildings: Reverberation and time of reverberation - Absorption coefficient - Sabines formula - measurement of reverberation time - Acoustic aspects of halls and auditoria. (6 Lectures)

Superposition of Two Perpendicularly Harmonic Oscillations: Graphical and Analytical Methods. Lissajous Figures (1:1 and 1:2) and their uses. (2 Lectures)

UNIT-II

Michelsons Interferometer: (1) Idea of form of fringes (no theory needed), (2) Determination of wavelength, (3) Wavelength difference, (4) Refractive index, and (5) Visibility of fringes.(2 Lectures)

Reference Books:

DSC 1D-LAB: WAVES AND OPTICS
20 Classes (2 hrs. duration)-Marks: 30

1. To investigate the motion of coupled oscillators.
2. To determine the Frequency of an Electrically Maintained Tuning Fork by Meldes Experiment and to verify 2 T Law.
3. To study Lissajous Figures.
4. Familiarization with Schuster’s focusing; determination of angle of prism.
5. To determine the Coefficient of Viscosity of water by Capillary Flow Method (Poiseuilles method).
6. To determine the Refractive Index of the Material of a Prism using Sodium Light.
8. To determine the value of Cauchy Constants.
10. To determine wavelength of sodium light using Fresnel Biprism.
11. To determine wavelength of sodium light using Newtons Rings.
12. To determine the wavelength of Laser light using Diffraction of Single Slit.
15. To measure the intensity using photosensor and laser in diffraction patterns of single and double slits.

Reference Books:

DISCIPLINE SPECIFIC ELECTIVE (DSE)
(Select Two Papers).

DSE: DIGITAL AND ANALOG CIRCUITS AND INSTRUMENTATION
(Credits: Theory-04, Practicals-02)
Theory: 40 Lectures-Marks: 70

UNIT-1:
Digital Circuits
De Morgan’s Theorems. Boolean Laws. Simplification of Logic Circuit using Boolean Algebra. Fundamental Products. Minterms and Maxterms. Conversion of a Truth Table into an Equivalent Logic Circuit by (1) Sum of Products Method and (2) Karnaugh Map. (5 Lectures)

UNIT-2:
Semiconductor Devices and Amplifiers:

UNIT-3:
Operational Amplifiers (Black Box approach):
Instrumentations:
Introduction to CRO: Block Diagram of CRO. Applications of CRO: (1) Study of Waveform, (2) Measurement of Voltage, Current, Frequency, and Phase Difference. (3 Lectures)
Power Supply: Half-wave Rectifiers. Centre-tapped and Bridge Full-wave Rectifiers Calculation of Ripple Factor and Rectification Efficiency, Basic idea about capacitor filter, Zener Diode and Voltage Regulation (5 Lectures)

Reference Books:

DSC-LAB: DIGITAL AND ANALOG CIRCUITS AND INSTRUMENTATION

20 Classes (2 hrS. duration)-Marks:30

1. To measure (a) Voltage, and (b) Frequency of a periodic waveform using a CRO.

2. To verify and design AND, OR, NOT and XOR gates using NAND gates.

3. To minimize a given logic circuit.

4. Half adder, Full adder and 4-bit Binary Adder.

5. Adder-Subtractor using Full Adder I.C.

6. To design an astable multivibrator of given specifications using 555 Timer.

7. To design a monostable multivibrator of given specifications using 555 Timer.

8. To study IV characteristics of PN diode, Zener and Light emitting diode.

9. To study the characteristics of a Transistor in CE configuration.

10. To design a CE amplifier of a given gain (mid-gain) using voltage divider bias.

11. To design an inverting amplifier of given gain using Op-amp 741 and study its frequency response.

12. To design a non-inverting amplifier of given gain using Op-amp 741 and study its Frequency Response.

13. To study a precision Differential Amplifier of given I/O specification using Opamp.

14. To investigate the use of an op-amp as a Differentiator.

15. To design a Wien Bridge Oscillator using an op-amp.

Reference Books:

DSE: SOLID STATE PHYSICS
(Credits: Theory-04, Practicals-02)
Theory: 40 Lectures-Marks: 70

Prerequisites: Knowledge of Elements of Modern Physics

UNIT-1:

UNIT-II

Reference Books:

1. Introduction to Solid State Physics, Charles Kittel, 8th Ed., 2004, Wiley India Pvt. Ltd.
1. Measurement of susceptibility of paramagnetic solution (Quinck's Tube Method).
2. To measure the Magnetic susceptibility of Solids.
3. To determine the Coupling Coefficient of a Piezoelectric crystal.
4. To measure the Dielectric Constant of a dielectric Materials with frequency.
5. To determine the complex dielectric constant and plasma frequency of metal using Surface Plasmon resonance (SPR).
6. To determine the refractive index of a dielectric layer using SPR.
7. To study the PE Hysteresis loop of a Ferroelectric Crystal.
8. To study the BH curve of iron using a Solenoid and determine the energy loss.
9. To measure the resistivity of a semiconductor (Ge) crystal with temperature by four-probe method (room temperature to 150 oC) and to determine its band gap.
10. To determine the Hall coefficient of a semiconductor sample.

Reference Books:

3. A Text Book of Practical Physics, I.Prakash & Ramakrishna, 11th Edn., 2011, Kitab Mahal

DSE: ELEMENTS OF MODERN PHYSICS
(Credits: Theory-04, Practicals-02)
Theory: 40 Lectures-Marks: 70

UNIT-I
Planck’s quantum, Planck’s constant and light as a collection of photons; Photoelectric effect and Compton scattering. De Broglie wavelength and matter waves; Davisson-Germer experiment. (6 Lectures)
Problems with Rutherford model-instability of atoms and observation of discrete atomic spectra; Bohr’s quantization rule and atomic stability; calculation of energy levels for hydrogen like atoms and their spectra. (4 Lectures)
Position measurement-gamma ray microscope thought experiment; Wave-particle duality, Heisenberg uncertainty principle- impossibility of a particle following a trajectory; Estimating minimum energy of a confined particle using uncertainty principle; Energy-time uncertainty principle. (4 Lectures)
Two slit interference experiment with photons, atoms & particles; linear superposition principle as a consequence; Matter waves and wave amplitude; Schrodinger equation for non-relativistic particles; Momentum and Energy operators; stationary states; physical interpretation of wavefunction, probabilities and normalization; Probability and probability current densities in one dimension. (8 Lectures)

UNIT-II
One dimensional infinitely rigid box-energy eigenvalues and eigenfunctions, normalization; Quantum dot as an example; Quantum mechanical scattering and tunnelling in one dimension - across a step potential and across a rectangular potential barrier. (8 Lectures)
Size and structure of atomic nucleus and its relation with atomic weight; Impossibility of an electron being in nucleus as a consequence of the uncertainty principle. Nature of nuclear force, NZ graph, semi-empirical mass formula and binding energy. (4 Lectures)
Radioactivity: stability of nucleus; Law of radioactive decay; Mean life and half-life; α decay; β decay-energy released, spectrum and Pauli’s prediction of neutrino; γ-ray emission. (4 Lectures)
Fission and fusion-mass deficit, relativity and generation of energy; Fission - nature of fragments and emission of neutrons. Nuclear reactor: slow neutrons interacting with Uranium 235; Fusion and thermonuclear reactions. (2 Lectures)

Reference Books:

DSC LAB: ELEMENTS OF MODERN PHYSICS
20 Classes (2 hrs. duration)-Marks: 30

1. To determine value of Boltzmann constant using V-I characteristic of PN diode.
2. To determine work function of material of filament of directly heated vacuum diode.
3. To determine the ionization potential of mercury.
4. To determine value of Planck's constant using LEDs of at least 4 different colours.
5. To determine the wavelength of H-alpha emission line of Hydrogen atom.
6. To determine the absorption lines in the rotational spectrum of Iodine vapour.
7. To study the diffraction patterns of single and double slits using laser and measure its intensity variation using Photosensor & compare with incoherent source Na.
8. Photo-electric effect: photo current versus intensity and wavelength of light; maximum energy of photo-electrons versus frequency of light.
9. To determine the value of e/m by (a) Magnetic focusing or (b) Bar magnet.
10. To setup the Millikan oil drop apparatus and determine the charge of an electron.

Reference Books:

SKILL ENHANCEMENT COURSE(Four)
(Credit: 02 each)-SEC:1 to SEC:4

1. COMMUNICATIVE ENGLISH & ENGLISH WRITING SKILL(Compulsory)
 (Credits: Theory-02)

2. COMPUTATIONAL PHYSICS
 (Credits: Theory-02)
 Theory: 20 Classes (1 hr. duration)

UNIT-I
Scientific Programming: Development of FORTRAN, Basic elements of FORTRAN: Character Set, Constants and their types, Variables and their types, Keywords, Variable Declaration and concept of instruction and program. Fortran Statements: I/O Statements (unformatted/formatted), Executable and Non-Executable Statements, Layout of Fortran Program, Format of writing. (10 Lectures)

UNIT-II
Control Statements: Types of Logic (Sequential, Selection, Repetition), Branching Statements (Logical IF, Arithmetic IF, Block IF, Nested Block IF, SELECT CASE and ELSE IF Ladder statements), DO Loop Statements, Jumping Statements (Unconditional GOTO, Computed GOTO, Assigned GOTO) Subscripted Variables (Arrays: Types of Arrays, DIMENSION Statement, Reading and Writing Arrays), Functions and Subroutines (Arithmetic Statement Function, Function Subprogram and Subroutine), RETURN, CALL Statements), open a file, writing in a file, reading from a file.
Programming:
1. Exercises on syntax on usage of FORTRAN.
2. To print out all natural even/ odd numbers between given limits.
3. To find maximum, minimum and range of a given set of numbers.
4. To find a set of prime numbers and Fibonacci series. (10 Lectures)

Reference Books:

2. Computer Programming in Fortran 77. V. Rajaraman (Publisher: PHI).
3. BASIC INSTRUMENTATION SKILLS
(Credits: Theory-02)
Theory: 20 Classes (1 hr. duration)

This course is to get exposure with various aspects of instruments and their usage through hands-on mode. Experiments listed below are to be done in continuation of the topics.

UNIT-I
Electronic Voltmeter: Advantage over conventional multimeter for voltage measurement with respect to input impedance and sensitivity. Principles of voltage, measurement (block diagram only). Specifications of an electronic Voltmeter/ Multimeter and their significance.
AC millivoltmeter: Type of AC millivoltmeters: Amplifier- rectifier, and rectifier- amplifier. Block diagram ac millivoltmeter, specifications and their significance.
Cathode Ray Oscilloscope: Block diagram of basic CRO. Construction of CRT, Electron gun, electrostatic focusing and acceleration (Explanation only no mathematical treatment), brief discussion on screen phosphor, visual persistence & chemical composition. Time base operation, synchronization. Front panel controls. Specifications of a CRO and their significance.
Use of CRO for the measurement of voltage (dc and ac frequency, time period. Special features of dual trace, introduction to digital oscilloscope, probes. Digital storage Oscilloscope: Block diagram and principle of working. (10 Lectures)

UNIT-II
Signal Generators and Analysis Instruments: Block diagram, explanation and specifications of low frequency signal generators. pulse generator, and function generator. Brief idea for testing, specifications. Distortion factor meter, wave analysis.
Digital Multimeter: Block diagram and working of a digital multimeter. Working principle of time interval, frequency and period measurement using universal counter/ frequency counter, time-base stability, accuracy and resolution. (10 Lectures)

The test of lab skills will be of the following test items:
1. Use of an oscilloscope.
2. CRO as a versatile measuring device.
3. Circuit tracing of Laboratory electronic equipment.
4. Use of Digital multimeter/VTVM for measuring voltages,
5. Circuit tracing of Laboratory electronic equipment.
7. Study the layout of receiver circuit.
8. Trouble shooting a circuit.

Laboratory Exercises:
1. To observe the loading effect of a multimeter while measuring voltage across a low resistance and high resistance.
2. To observe the limitations of a multimeter for measuring high frequency voltage and currents.
3. To measure Q of a coil and its dependence on frequency, using a Q-meter.
4. Measurement of voltage, frequency, time period and phase angle using CRO.
5. Measurement of time period, frequency, average period using universal counter/ frequency counter.
6. Measurement of rise, fall and delay times using a CRO.

Open Ended Experiments:
1. Using a Dual Trace Oscilloscope.
2. Converting the range of a given measuring instrument (voltmeter, ammeter).

Reference Books:

2. Performance and design of AC machines - M G Say ELBS Edn.

4. **RENEWABLE ENERGY AND ENERGY HARVESTING**
 (Credits: Theory-02)
 Theory: 20 Classes (1 hr. duration)
The aim of this course is not just to impart theoretical knowledge to the students but to provide them with exposure and hands-on learning wherever possible.

UNIT-I
Fossil fuels and Alternate Sources of energy: Fossil fuels and nuclear energy, their limitation, need of renewable energy, non-conventional energy sources. An overview of developments in Offshore Wind Energy, Tidal Energy, Wave energy systems, Ocean Thermal Energy, Conversion, solar energy, biomass, biochemical conversion, biogas generation, geothermal energy tidal energy, Hydroelectricity.
Solar energy: Solar energy, its importance, storage of solar energy, solar pond, non plate collector, solar distillation, solar cooker, solar green houses, solar cell, absorption air conditioning. Need and characteristics of photovoltaic (PV) systems, PV models and equivalent circuits, and sun tracking systems. (10 Lectures)

UNIT-II
Hydro Energy: Hydropower resources, hydropower technologies, environmental impact of hydro power sources.(10 Lectures)

Reference Books:

1. Non-conventional energy sources - G.D Rai - Khanna Publishers, New Delhi
2. Solar energy - M P Agarwal - S Chand and Co. Ltd.

5. APPLIED OPTICS
 (Credits: Theory-02)
 Theory: 20 Classes (1 hr. duration)
Theory includes only qualitative explanation. Minimum five experiments should be performed covering minimum three sections.

UNIT-I
Elementary ideas of Fourier Optics: Concept of Spatial frequency filtering, Fourier transforming property of a thin lens. (10 Lectures)

UNIT-II
Holography

Reference Books:
PSYCHOLOGY (HONOURS)

SEMESTER-I

C:1-INTRODUCTORY PSYCHOLOGY
 (Credits: 6, Theory-4, Practical-2)
 Lectures: 60 (Theory:40, Practical:20)
 Max. Marks:100 (Theory:70, Practical:30)

Introduction:
The course is designed to give the student a basic understanding of the psychology of human behavior. The students will be given exposure to concepts, terminology, principles, and theories that comprise an introductory course in psychology.

Learning Objectives:

1. To help the students to know the sources and processes of development of modern scientific psychology.

2. To help the students to develop a scientific temperament in studying and understanding human behavior.

Expected outcomes: Students will be able to

1. Define the term psychology and demonstrate command of the basic terminology, concepts, and principles of the discipline.

2. Gain knowledge of scientific methodology the variety of ways in which psychological data are gathered and evaluated / interpreted.

3. Identify and compare the major perspectives in psychology: Recognize how each approach views human thought and behavior.

4. Understand the physiological and biochemical links of human behavior.

UNIT-I: Introducing Psychology

(i) Concept and definition of psychology, Roots of psychology, Psychology as a scientific discipline.

(ii) Key Perspectives in Psychology- Behavioral, Cognitive, Humanistic, Psychodynamic, and Sociocultural

UNIT-II: Methods in Psychology

(i) Natural Observation, Survey and Case Study- Nature, advantages and limitations.

UNIT-III: Biological Bases of Behavior

(i) Structure and functions of the neurons, Communication within and between neurons, Chemical regulation of the endocrine glands.

(ii) Structure and functions of the Central nervous system and Autonomic nervous system.

UNIT-IV: States of Mind

(i) Nature of consciousness; changes in consciousness- sleep-wake schedules

(ii) Extended states of Consciousness- Hypnosis, Meditation and Hallucinations

PRACTICAL

(i) R.L. by Method of Limits: To find out the R. L. of volar surface of the right arm of a subject by method of limits.

(ii) D.L. by Method of Constant Stimuli: To find out the D.L. for lifted weight of your subject by method of constant stimuli.

Recommended Books

Introduction:
The course is designed to expose students to a basic understanding about the fundamental concerns of developmental psychology and provide examples of the following three dimensions of development: growth, differentiation, and orderly progression.

Learning Objectives:

1. To help students gain some key ideas about human development and the perspectives to understand and explain such developments.

2. To help the students to understand the significance of prenatal period for human development.

3. To help the students to understand the developmental preparations of the childhood and the implications of developmental milestones for the normal human development.

Expected outcomes: Students will be able to

1. Understand the nature, types, and principle of development.

2. Understand the processes of formation of life and development during pre- and post-natal periods.

3. Understand about the different aspects of preparation for future life.

UNIT-I: Basics of development

(i) Meaning, nature, and types of development; Principles of development; Factors influencing development

(ii) Perspectives of development- Psychoanalytic; Mechanistic; Organismic; Humanistic

UNIT-II: Life in formation

(i) Fertilization, determination of sex, multiple birth; Prenatal development- germinal stage, embryonic stage, fetal stage; Factors influencing prenatal development

(ii) Physical and motor developments, Social and emotional developments during childhood.

UNIT-III: Life in preparation

(i) Physical and motor developments, Social and emotional developments during adolescence.

(ii) Piagets stage of cognitive development; Kohlbergs stages of moral development

UNIT-IV: Self and identity

(i) Emergence of self; Structure of the self; Development of personal identity
(ii) Development of self control; Development of gender differences and gender roles

PRACTICAL

(i) Locus of Control: To assess the Locus of Control of four college students by using Rotter's Locus of Control Scale.

(ii) Emotional Intelligence: To measure the emotional intelligence of four college students by using the Schuttles Emotional Intelligence Scale

Recommended Books

GE:1-INTRODUCTORY PSYCHOLOGY

(Credits:6, Theory-4, Practical-2)
Lectures: 60 (Theory:40, Practical:20)
Max. Marks:100(Theory:70, Practical:30)

Introduction:
The course is designed to give the student a basic understanding of the psychology of human behavior. The students will be given exposure to concepts, terminology, principles, and theories that comprise an introductory course in psychology.

Learning Objectives:

1. To help the students to know the sources and processes of development of modern scientific psychology.

2. To help the students to develop a scientific temperament in studying and understanding human behavior.
Expected outcomes: Students will be able to

1. Define the term psychology and demonstrate command of the basic terminology, concepts, and principles of the discipline.

2. Gain knowledge of scientific methodology - the variety of ways in which psychological data are gathered and evaluated/interpreted.

3. Identify and compare the major perspectives in psychology: Recognize how each approach views human thought and behavior.

4. Understand the physiological and biochemical links of human behavior.

UNIT-I: Introducing Psychology

(i) Concept and definition of psychology, Roots of psychology, Psychology as a scientific discipline.

(ii) Key Perspectives in Psychology - Behavioral, Cognitive, Humanistic, Psychodynamic, and Sociocultural

UNIT-II: Methods in Psychology

(i) Natural Observation, Survey and Case Study - Nature, advantages and limitations.

UNIT-III: Biological Bases of Behavior

(i) Structure and functions of the neurons, Communication within and between neurons, Chemical regulation of the endocrine glands.

(ii) Structure and functions of the Central nervous system and Autonomic nervous system.

UNIT-IV: States of Mind

(i) Nature of consciousness; changes in consciousness - sleep-wake schedules

(ii) Extended states of Consciousness - Hypnosis, Meditation and Hallucinations

PRACTICAL

(i) R.L. by Method of Limits: Students are required to find out the R. L. of volar surface of the right arm of a subject by method of limits

(ii) D.L. by Method of Constant Stimuli: To find out the D.L. for lifted weight of your subject by method of constant stimuli.

Recommended Books

SEMESTER-II

C:3-BASIC PSYCHOLOGICAL PROCESSES
(Credits:6, Theory-4, Practical-2)
Lectures: 60 (Theory:40, Practical:20)
Max. Marks:100(Theory:70, Practical:30)

Introduction:
The course is designed to provide the student a basic understanding of the psychological processes from sensation to thought and communication. The student will be given exposure to the concepts, terminology, principles, and theories relating to each of the mental processes that constitute human psychology.

Learning Objectives:

1. To help the students to understand the mental processes to begin with sensation and perception up to how it results in thoughts and communication.

2. To help the students gather knowledge about the structural and functional dynamics of each of the mental processes and their interconnectedness.

Expected outcomes: Students will be able to

1. Understand the bases sensory actions and the processes of integration of sensory actions in creating and interpreting perceptual events.
2. Gain knowledge of the important processes and principles of human learning as well as the structural functional attributes of human memory to help conserve the learning outcomes.

3. Understand the structural and functional properties of language and the way it helps thought, communication, problem solving and decision making through development of concepts, ideas, images, and so on.
UNIT-I: Sensation and Perception
(i) Basics of sensation- Sensory receptors (eye and ear), transduction, sensory thresholds, and sensory adaptation
(ii) Nature of perceptual process- Figure and ground, Grouping (Gestalt laws), Perceptual constancies, and illusions, Perception of distance and depth.

UNIT-II: Learning and Memory
(i) Nature and principles of Classical conditioning, Operant conditioning, and Observational learning
(ii) The Atkinson and Shiffrin Model of Memory; Types of Memory- episodic, semantic and procedural; Causes of Forgetting- interference, repression, and amnesia

UNIT-III: Language and Communication
(i) Properties and structure of language, Linguistic hierarchy, Language acquisition-predisposition, Nature of effective communication
(ii) Stages of language development; critical period controversy; speech error and its implications

UNIT-IV: Thinking and Reasoning
(i) Thinking process; concepts, categories and prototypes, Decision making and factors of influencing decision making.
(ii) Inductive and deductive reasoning; Problem solving approaches; Steps in problem solving

PRACTICAL
(i) Learning Curve: To demonstrate the Learning Curve as a function of Learning trials using Non-sense Syllables.
(ii) Serial Position Effect: To demonstrate the serial position effect on memory in learning a list of nonsense syllables.

Recommended Books
Introduction:
Human empowerment is ultimately an individual condition of gaining the power to control and modulate changes in one’s own life those are considered important to one’s identity and adjustment. The purpose of the course is to introduce students to the basics of human empowerment and how the empowerment processes are strengthened and improved.

Learning Objectives:

1. To help students gain ideas about intelligence and personality as foundations of human empowerment.
2. To make students understand how motivation and emotion are empowering processes to human development.
3. To help students gain insight into human behavior as products of empowerment

Expected outcomes: Students will be able to

1. Know the structural components and functional dynamics of both intelligence and personality.
2. Understand the significance of emotion and motivation in behavior management.
3. Understand significant aspects of social behavior as resulting in happiness, well-being and personal growth.

UNIT-I: Basics of empowerment

(i) Intelligence- Theories of Gardner, and Stenberg; Heredity, environment, and intelligence
(ii) Measuring Intelligence: intelligence tests; Interpretation of test score, Cross-cultural issues in testing intelligence

UNIT-II: Sources of Power (1)

(i) Personality- Freuds theory, Humanistic theories, and Social cognitive theory

(ii) Personality-Trait and type approach, Biological and sociocultural determinants, Psychometric and projective assessment.

UNIT-III: Sources of Power(2)

(i) Motivation-Drive theory, Arousal theory, Expectancy theory, Maslows need hierarchy

(ii) Emotion-Theories of James-Lange, Cannon-Bard, Schachter-Singer, and Opponent-Process

UNIT-IV: Proving empowered

(i) Social behavior- Meaning of attribution and errors in attribution, Meaning of social cognition and processing of social information

(ii) Positive Psychology-Scope and aims, Nature and characteristics of happiness, Subjective well-being and personal growth

PRACTICAL

(i) Intelligence test- To test the non-verbal intelligence of Two college students using Ravens Standard Progressive Matrices

(ii) Personality Type- To assess the personality type of a student obtaining responses from the student and two other significant persons in his /her life by using Glazers test of Personality Type

Recommended Books

GE:2-BASIC PSYCHOLOGICAL PROCESSES
(Credits:6, Theory-4, Practical-2)
Lectures: 60 (Theory:40, Practical:20)
Max. Marks:100(Theory:70, Practical:30)

Introduction:
The course is designed to provide the student a basic understanding of the psychological processes from sensation to thought and communication. The student will be given exposure to the concepts, terminology, principles, and theories relating to each of the mental processes that constitute human psychology.

Learning Objectives:
1. To help the students to understand the mental processes to begin with sensation and perception up to how it results in thoughts and communication.
2. To help the students gather knowledge about the structural and functional dynamics of each of the mental processes and their interconnectedness.

Expected outcomes: Students will be able to
1. Understand the bases sensory actions and the processes of integration of sensory actions in creating and interpreting perceptual events.
2. Gain knowledge of the important processes and principles of human learning as well as the structural functional attributes of human memory to help conserve the learning outcomes.
3. Understand the structural and functional properties of language and the way it helps thought, communication, problem solving and decision making through development of concepts, ideas, images, and so on.
UNIT-I: Sensation and Perception

(i) Basics of sensation- Sensory receptors (eye and ear), transduction, sensory thresholds, and sensory adaptation

(ii) Nature of perceptual process- Figure and ground, Grouping (Gestalt laws), Perceptual constancies, and illusions, Perception of distance and depth.

UNIT-II: Learning and Memory

(i) Nature and principles of Classical conditioning, Operant conditioning, and Observational learning

(ii) The Atkinson and Shiffrin Model of Memory; Types of Memory- episodic, semantic and procedural; Causes of Forgetting- interference, repression, and amnesia

UNIT-III: Language and Communication

(i) Properties and structure of language, Linguistic hierarchy, Language acquisition-predisposition, Nature of effective communication

(ii) Stages of language development; critical period controversy; speech error and its implications

UNIT-IV: Thinking and Reasoning

(i) Thinking process; concepts, categories and prototypes, Decision making and factors of influencing decision making.

(ii) Inductive and deductive reasoning; Problem solving approaches; Steps in problem solving

PRACTICAL

(i) Learning Curve: To demonstrate the Learning Curve as a function of Learning trials using Non-sense Syllables.

(ii) Serial Position Effect: To demonstrate the serial position effect on memory in learning a list of nonsense syllables.

Recommended Books

Introduction:
The course is designed to equip students with knowledge in the fundamentals of statistics and research methods so that they understand the application of statistics to different research problems in psychology.

Learning Objectives:

1. To help students develop knowledge and understanding of the application of Statistics within Psychology

2. To help students develop Critical Thinking for application of appropriate statistical analysis in Psychological research

Expected outcomes: Students will be able to

1. The nature psychological variables and how to measure them with appropriate scale.

2. The processes of describing and reporting statistical data.

3. The methods of drawing inferences and conclusions for hypothesis testing by using appropriate statistical analysis.

UNIT-I: Fundamentals of statistics
(i) Meaning and scope of statistics, Nature of variables- Categorical and Continuous, Levels of Measurement- Nominal, Ordinal, Interval, and Ratio

(ii) Drawing frequency distribution; Graphical representation of grouped data-Polygon, Histogram, Ogive.

UNIT-II: Measures of Statistics

(i) Measures of Central Tendency- Characteristics of mean, median and mode; Computation of mean, median, and mode

(ii) Measures of Variability- Concept of variability, computation of semi-inter quartile range, Standard deviation and variance, Co-efficient of variation

UNIT-III: Sources and Applications

(i) Concept of Probability; Characteristics of Normal Probability curve, Applications of NPC, Deviation from NPC- Skewness and Kurtosis

(ii) Concept of correlation, Product-moment correlation (ungrouped data), Rank order correlation, Chi-square test (Contingency Table)

UNIT-IV: Hypothesis Testing

(i) Level of significance; Type I and Type II error; Computation of t for independent and dependent samples, The Mann-Whitney U test

(ii) Purpose and assumptions of ANOVA; One-way and two-way ANOVA; Kruskal-Wallis H test

PRACTICAL

(i) Reporting of Statistical Results: To collect data of 60 (30 boys and 30 girls) High School students about their Annual examination marks in four subjects and to report by descriptive statistical analyses.

(ii) Computer Awareness: To be familiar with software packages of statistics and their applications.

Recommended Books

Introduction:
Social psychology is the scientific study of the nature and causes of human behavior in a social context. This course is designed to introduce the students to the field of social psychology, to explain how social psychologists think about and study human behavior; to introduce the body of knowledge and underlying principles that currently exist in the field and to encourage reflection about the implications of social psychology for the situations we encounter in everyday life.

Learning Objectives:

1. To help students develop awareness of the concepts, problems and issues in the discipline of social psychology
2. To make students understand the individuals and groups in respect to patterns of social behavior and attitudes
3. To help students gain insight into the dynamics of intergroup relationships, conflict, prejudice and cooperation.

Expected outcomes: Students will be able to

1. Know the scope of studying social psychology and the methods to gather data in the social context to explain them.
2. Understand the significance of social cognition, attitudes, stereotypes and prejudices in explaining human behavior in the social contexts.
3. Understand the significant aspects group behavior and social influence that constitute the core of human relationships.
UNIT-I: Introduction

(i) Nature, goal, and scope of Social Psychology; Methods of Social Psychology- Observation; Questionnaire, Interview, and Experiment

(ii) Social Cognition- Perceiving ourselves: self-concept, self-esteem, self-presentation and self expression; Perceiving others and forming impressions

UNIT-II: Attitude, Prejudice and Stereotypes

(i) Attitudes- Nature, characteristics and functions of attitude; Attitude formation and change; Attitude measurement

(ii) Measures of Variability- Concept of variability, computation of semi-inter quartile range, Standard deviation and variance, Co-efficient of variation

UNIT-III: Group and Leadership

(i) Group- Group structure and function, Task performance: Social facilitation, Social loafing; Conformity, Obedience and social modeling; Group cohesiveness-

(ii) Leadership- Definitions and functions, Trait, situational, interactional and contingency approaches to leadership; Leadership effectiveness, The charismatic leadership

UNIT-IV: Social Behavior

(i) Prosocial behavior-Cooperation and helping, personal, situational and socio-cultural determinants, Theoretical explanations of prosocial behavior.

(ii) Aggression- Theoretical perspectives, Trait, situational and social learning approaches, social and personal determinants of aggression, prevention and control of aggression.

PRACTICAL

(i) Ethical Values: To assess the ethical values of five adolescents by using Donelons Ethical Position Questionnaire (EPQ)

(ii) Attitude towards Women: To measure the attitude of three boys and three girls towards Women by using Spence, Helmrich & Stapps Attitude towards Women scale.

Recommended Books

C:7-ENVIRONMENTAL PSYCHOLOGY
(Credits:6, Theory-4, Practical-2)
Lectures: 60 (Theory:40, Practical:20)
Max. Marks:100(Theory:70, Practical:30)

Introduction:
Environmental psychology is an interdisciplinary field focused on the interplay between individuals and their surroundings. The field defines the term environment broadly, encompassing natural environments, social settings, built environments, learning environments, and informational environments. The course is designed to introduce to the students about all these aspects of environment.

Learning Objectives:
1. To highlight the simultaneous mutual interaction of environment and behavior.
2. To delineate psychological approaches to the study of environment.
3. To discuss the impact of ecological degradation and the need for enhanced awareness programs

Expected outcomes: Students will be able to
1. understand the interactional relationships between environment and behavior
2. understand the problems occurring to ecology and environment at the present time
3. understand different psychological approaches to the study of man-environment relationship.

UNIT-I: Environment and Behavior

(i) Earth as a living system: The gala hypothesis, Deep ecology; Man-environment relationship—physical, social, cultural, orientation and product.

(ii) Effects of Environment on behavior: Noise pollution, Air pollution, Crowding and population explosion.

UNIT-II: Ecology and Development

437
(i) Human behavior Environmental Problems: Global warming, Greenhouse effect, energy depletion; Pro-environmental behaviors.

(ii) Ecosystem and their components; Sustainable development; Resource use: Common property resources. Ecology: Acculturation and psychological adaptation

UNIT-III: Psychological Approaches to environment

(i) Field theory approach; Eco-cultural Psychology (Berry); Biosocial Psychology (Dawson);

(ii) Person environment transaction (Sokols & Ittelson); Ecological Psychology (Barker); Ecological system approach (Bronfenbrenner)

UNIT-IV: Environmental Assessment

(i) Socio-psychological dimensions of environmental impact; Environmental deprivation-nature and consequences.

(ii) Creating environmental awareness; Social movements- Chipko, Tehri, Narmada.

PRACTICAL

(i) To assess the environmental literacy of 4 college students using Bob Simpsons Environment literacy and awareness survey questionnaire.

(ii) To assess the environmental attitude, concern and sensitivity of 4 college students using Bob Simpsons Environment literacy and awareness survey questionnaire.

Recommended Books

GE:3-PSYCHOLOGICAL STATISTICS

(Credits:6, Theory-4, Practical-2)

Lectures: 60 (Theory:40, Practical:20)
Max. Marks:100(Theory:70, Practical:30)

Introduction:
The course is designed to equip students with knowledge in the fundamentals of statistics and research methods so that they understand the application of statistics to different research problems in psychology.

Learning Objectives:
1. To help students develop knowledge and understanding of the application of Statistics within Psychology

2. To help students develop Critical Thinking for application of appropriate statistical analysis in Psychological research

Expected outcomes: Students will be able to

1. The nature psychological variables and how to measure them with appropriate scale.

2. The processes of describing and reporting statistical data.

3. The methods of drawing inferences and conclusions for hypothesis testing by using appropriate statistical analysis.

UNIT-I: Fundamentals of statistics

(i) Meaning and scope of statistics, Nature of variables- Categorical and Continuous, Levels of Measurement- Nominal, Ordinal, Interval, and Ratio

(ii) Drawing frequency distribution; Graphical representation of grouped data-Polygon, Histogram, Ogive.

UNIT-II: Measures of Statistics

(i) Measures of Central Tendency- Characteristics of mean, median and mode; Computation of mean, median, and mode

(ii) Measures of Variability- Concept of variability, computation of semi-inter quartile range, Standard deviation and variance, Co-efficient of variation

UNIT-III: Sources and Applications

(i) Concept of Probability; Characteristics of Normal Probability curve, Applications of NPC, Deviation from NPC- Skewness and Kurtosis

(ii) Concept of correlation, Product-moment correlation (ungrouped data), Rank order correlation, Chi-square test (Contingency Table)

UNIT-IV: Hypothesis Testing

(i) Level of significance; Type I and Type II error; Computation of t for independent and dependent samples, The Mann-Whitney U test

(ii) Purpose and assumptions of ANOVA; One-way and two-way ANOVA; Kruskal-Wallis H test

PRACTICAL

(i) Reporting of Statistical Results: To collect data of 60 (30 boys and 30 girls) High School students about their Annual examination marks in four subjects and to report by descriptive statistical analyses.
(ii) **Computer Awareness:** To be familiar with software packages of statistics and their applications.

Recommended Books

9. Walaram, G. *Statistics for Behavioral Sciences*

C:8-PSYCHOPATHOLOGY

(Credits: 6, Theory-4, Practical-2)

Lectures: 60 (Theory: 40, Practical: 20)

Max. Marks: 100 (Theory: 70, Practical: 30)

Introduction:

Psychopathology refers to the study of mental illness. This course is designed to expose students to the key concepts in psychopathology as well as the major theories associated with the etiology and treatment of psychological disorders and disabilities. Students will be able to understand the distinction between normal and abnormal and the qualities that are used to differentiate what is typical versus atypical through citations of different disorders.

Learning Objectives:

1. To help students define and understand the basic concepts underlying psychopathology and the perspectives which contributed to the development of modern psychopathology.

2. To help students understand the assessment techniques for identifying and classifying maladaptive behavior and mental disorders.
3. To guide students to gain specific knowledge about different types of mental disorders.

Expected outcomes: Students will be able to

1. Understand the differences between normality and abnormality along with the perspectives explaining them.
2. Know the importance and the use of assessment techniques in identifying different forms of maladaptive behavior.
3. Learn the symptoms, causes and treatment of anxiety disorders, mood disorders and schizophrenia.

UNIT-I: Basics of Pathology

(i) Concept of abnormality; Perspectives of abnormal behavior- Psychodynamic, Behavioral, Cognitive, Humanistic-Existential, and Sociocultural

(ii) Classification of maladaptive behavior-DSM-IV; Assessment techniques- Diagnostic tests, Rating scales, History taking interview, Projective tests

UNIT-II: Anxiety and Mood disorder

(i) Symptoms, causes and treatment of Generalized anxiety disorder, Phobic disorder, Obsessive-Compulsive disorder

(ii) Depressive disorder Symptoms, causes and treatment of Bipolar affective disorder, and Dysthymia

UNIT-III: Personality Disorders

(i) Paranoid, Schizoid, Dissociative, Impulsive

(ii) Borderline, Anxious, Avoidance, Dependent personality

UNIT-IV: Schizophrenia and Therapies

(i) Characteristics, Major subtypes, Causes and treatment of Schizophrenia

(ii) Psychodynamic, and Cognitive Behavior therapy.

PRACTICAL

(i) Anxiety: Assessment of Anxiety of a subject by Hamilton Anxiety Rating Scale (HARS)

(ii) Depression: Assessment of Depression Profile of a subject by Becks Depression Inventory (BDI)

Recommended Books

Introduction:
This course provides an introduction to concepts, theories, and research in educational psychology. The topics covered include cognitive development during the school years, classroom management, instructional approaches, motivation, assessment, and individual differences.

Learning Objectives:

1. To provide students with an overview of the purposes and uses of educational psychology.

2. To help students understand human development focusing mainly on the years of formal education including those with ability differences

3. To make students understand the ways that educators motivate their students to learn and strive for excellence

4. To make students explore the ways that educators manage learning environments to maximize learning and social cohesion
Expected outcomes: Students will be able to

1. Define educational psychology and give examples of the different topics educational psychologists study.

2. Describe the developmental issues faced by school age children.

3. Describe the challenges presented by children with ability differences.

4. Explain the role of motivation on learning and classroom behavior.

5. Describe classroom management techniques.

6. Identify commonly used standardized tests, their strengths and limitations, and use in school settings.

UNIT-I Foundations of Educational Psychology
(i) Concepts and principles of educational psychology, The teaching-learning process, Goals of teaching and objectives for learning.
(ii) Theories of cognitive development-Piaget, Bruner and Vygotsky.

UNIT- II Motivation and Classroom Management
(i) Meaning of motivation, Intrinsic and extrinsic motivation, Approaches to understand classroom motivation, Motivational techniques in classroom teaching.
(ii) The goals of classroom management, Creating a positive learning environment, Characteristics of an effective teacher, Teacher expectation and students performance.

UNIT III Creativity and Aptitude
(i) Nature and characteristics of creativity; Theories of creativity; Fostering creativity among children.
(ii) Nature and characteristics of aptitude; Types of aptitude; Measurement of aptitude; Utility of aptitude tests.

UNIT -IV Dealing with ability differences and Testing
(i) Teaching children with mental retardation, learning disability, social class differences, and attention deficit Hyperactive disorder.
(ii) Types of standardized tests- Achievement test, and aptitude tests, Advantages and limitations of standardized test.

PRACTICAL
(i) Academic Behavior: To assess the academic attitude and behavior of college students by using Sias Academic Behavior Scale.
(ii) Academic Stress: To assess the academic stress of two higher Secondary students using Raos Academic Stress Scale.

Recommended Books

Introduction:
The course is designed to expose students to a basic understanding about approaches to psychological assessment and develop skill in the administration and interpretation of psychological tests.

Learning Objectives:

1. To train students in various psychological assessment techniques
2. To impart skills necessary for selecting and applying different tests for different purposes such as evaluation, training, rehabilitation etc.

Expected outcomes: Students will be able to

1. Understand the basic facts about psychological assessment.
2. Understand the processes of test construction and standardization.
3. Understand about the assessment of different types of skills and abilities.

UNIT-I Introduction
(i) Nature and Scope of human assessment; Parameters of assessment.
(ii) Psychological scaling, Methods of scaling.

UNIT- II Psychological Tests
(i) Principles of test construction and standardization- Item analysis, reliability, validity and development of norms.
(ii) Types of psychological tests- Individual, group, performance, verbal, nonverbal.

UNIT III Assessment of Ability
(i) Assessment of general abilities- Intelligence, interest, interpersonal interaction.
(ii) Assessment of personality- Use of self report inventories, interview, projective and non-projective tests.

UNIT IV Classroom Assessment
(i) Classroom as assessment context, Traditional tests, Alternative assessment.
(ii) Grading and reporting of performance, Computer and assessment.

PRACTICAL

(i) Empathy: To assess the empathy behavior of Five college students using Sprengs Empathy questionnaire.
(ii) Sense of Humor: To assess the Sense of Humor of 4 College Students Using McGhees Scale of Sense of Humor (MSSH).

Recommended Books

Introduction:

Psychopathology refers to the study of mental illness. This course is designed to expose students to the key concepts in psychopathology as well as the major theories associated with the etiology and treatment of psychological disorders and disabilities. Students will be able to understand the distinction between normal and abnormal and the qualities that are used to differentiate what is typical versus atypical through citations of different disorders Learning Objectives:

1. To help students define and understand the basic concepts underlying psychopathology and the perspectives which contributed to the development of modern psychopathology.
2. To help students understand the assessment techniques for identifying and classifying maladaptive behavior and mental disorders.
3. To guide students to gain specific knowledge about different types of mental disorders.

Expected outcomes: Students will be able to

1. Understand the differences between normality and abnormality along with the perspectives explaining them.
2. Know the importance and the use of assessment techniques in identifying different forms of maladaptive behavior.
3. Learn the symptoms, causes and treatment of anxiety disorders, mood disorders and schizophrenia.
UNIT-I Basics of Pathology
(i) Concept of abnormality; Perspectives of abnormal behavior- Psychodynamic, Behavioral, Cognitive, Humanistic-Existential, and Sociocultural.
(ii) Classification of maladaptive behavior- DSM-IV; Assessment techniques- Diagnostic tests, Rating scales, History taking interview, Projective tests.

UNIT-II Anxiety and Mood disorder
(i) Symptoms, causes and treatment of Generalized anxiety disorder, Phobic disorder, Obsessive-Compulsive disorder.
(ii) Depressive disorder Symptoms, causes and treatment of Bipolar affective disorder, and Dysthymia.

UNIT III Personality Disorders
(i) Paranoid, Schizoid, Dissociative, Impulsive.
(ii) Borderline, Anxious, Avoidance, Dependent personality.

UNIT IV Schizophrenia and Therapies
(i) Characteristics, Major subtypes, Causes and treatment of Schizophrenia.
(ii) Psychodynamic, and Cognitive Behavior therapy.

PRACTICAL
(i) Anxiety: Assessment of Anxiety of a subject by Hamilton Anxiety Rating Scale (HARS).
(ii) Depression: Assessment of Depression Profile of a subject by Becks Depression Inventory (BDI).

Recommended Books
Introduction:
The course provides an overview of the main fields of organizational and personnel psychology. It focuses on topics such as organizational system; work behavior, attitudes and motivation as related to organizational set up; management of power and politics in the organizations; and finally development and evaluation of human resources for sustainable growth of an organizations. Learning Objectives:

1. To help students able to understand the structure, functions, and designs of different organizations.
2. To make students understand the processes of group decision making and leadership functions in different organizations.
3. To make students understand the theories of work motivation and related issues of power and politics in the organizational set up.
4. To help students demonstrate professional skills in the evaluation, management, and development of human resources in the organizations.

Expected outcomes: Students will be able to

1. Understand different concepts and dynamics related to organizational system, behavior, and management.
2. Identify steps managers can take to motivate employees in the perspectives of the theories of work motivation.
3. Understand the tricks of power and politics management in the organizations.
4. Understand significance of human resource development, evaluation and management for the interest and benefit of the organization.

UNIT-I Historical context of organizational behavior
(i) Contributions of Taylor, Weber and Fayoll; Challenges, Scope and opportunities for OB.
(ii) OB perspectives-Open system approach, Human relations perspective, Socio-technical approach, OB model responsive to Indian realities.

UNIT- II Organization System
(i) Structure and functions of organization, Common organizational designs, Management roles, functions and skills.
(ii) Group decision making processes in organizations, Organizational leadership and types of leadership in organizations.

UNIT III Work, Power and Politics
(i) Contemporary theories of work motivation- ERG theory, McClellands theory of needs, Cognitive evaluation theory, Goal-setting theory, Reinforcement theory.
(ii) Defining power in organization, Bases of power, Power tactics, Nature of organizational politics, Impression management, and defensive behavior.

UNIT IV Human resource development and Evaluation
(i) Human Skills and Abilities, Selection Practices for Optimal Use of Human Resources; Training Programs for the Development of Human Resources.
(ii) Performance Evaluation- Purpose, Methods, Potential Problems and methods to overcome them.

PRACTICAL

(i) Leadership Style: To measure his basic leadership style of 4 college students by using Greenberg Basic Leadership Style scale.
(ii) Conflict-Handling: To measure the conflict-handling style of 4 college students by using Rahims scale to identify their conflict handling style.

Recommended Books

Introduction:
Health psychology is a specialty area that focuses on how biology, psychology, behavior and social factors influence health and illness. This course is designed to provide an introduction to the area of health psychology to help students understand how Health Psychology as a specialty within psychology addresses the role of behavioral factors in health and illness. Basic theories, models and applications are also included. Learning Objectives:

1. To help the students understand the issues of Health Psychology and how to address them by the bio-psychosocial model of health and illness.
2. To help the students to describe behavioral factors that influence health and illness.
3. To guide the students understand about health enhancing behaviors including coping with illness.

Expected outcomes: Students will be able to

1. Know the basics of health and illness from the Bio-psychosocial perspectives.
2. Understand the significance of behavioral and psychological correlates of health and illness.
3. Understand the significant aspects coping and importance of health enhancing behavior.

UNIT-I Introduction
(i) Goals of Health Psychology, Biopsychosocial model of health and illness.

UNIT- II Health and Illness
(i) Behavioral and psychological correlates of illness, Approaches to promoting wellness, Some common health beliefs and their implications.
(ii) Models of health- The cognition models- The health belief model, The protection motivation model, Leventhal’s self regulatory model.

UNIT III Health and Coping
(i) Individual differences in symptom perception, Coping with the crises of illness; Compliance behavior and improving compliance.
(ii) Health enhancing behavior- Diet management, Yoga and Exercise.

UNIT IV Health Issues
(i) Children health issues- Malnutrition, Immunization, Autism, ADHD.
(ii) Health issues of women and elderly: Diabetes, Osteoporosis, Alzheimers Disease, Depression.
PRACTICAL

(i) **Sleep Quality:** To assess the Sleep quality of 4 college students The Pittsburgh Sleep Quality Index (PSQI).

(ii) **Coping Strategies:** To assess of the Coping Strategies of 4 college students by Tobins Coping Strategy Inventory (TCSI).

Recommended Books

DISCIPLINE SPECIFIC ELECTIVES

DSE-1: PSYCHOLOGICAL RESEARCH & MEASUREMENT
(Credits: 6, Theory-4, Practical-2)
Lectures: 60 (Theory: 40, Practical: 20)
Max. Marks: 100 (Theory: 70, Practical: 30)

Introduction:
The research methods course is among the most frequently required in the psychology and with good reason. It helps the students know about the difference between an experiment and a correlational study, the function of independent and dependent variables, the importance of reliability and validity in psychological measurement, and the need for replication in psychological research. In other words, psychologists research methods are at the very core of their discipline. The course is designed to train the students in psychological research and measurement. Learning Objectives:

1. To provide an overview of scientific approaches to psychological research in terms of sampling techniques, scientific method, and experimental designs.

2. To acquaint the students with respect to psychometric, projective techniques and non-testing approaches like interviews.

Expected outcomes: Students will be able to

UNIT-I Psychological Research
(i) Assumptions of science, Characteristics of scientific methods, Psychological research: Correlational and experimental.
(ii) Sampling frame: probability and non-probability samples, sample size, sampling error.

UNIT- II Psychological Scaling and Construction of test
(i) Purpose of scaling and types of psychological data, Psychological scaling methods: Familiarity with Thurstone, Likert and Guttman scale.
(ii) Construction of test: Theory of measurement error; Operationalizing a concept, Generating items, Item analysis, Item response theory.

UNIT III Experimental Designs
(i) Pretest- post-test design, Factorial designs, RandomizedBlock design Standardization of tests.
(ii) Reliability and validity of tests, Development of norms and interpreting test scores.

UNIT IV Assessment of Personality
(i) Psychometric and projective techniques, Familiarity with MMPI, Rorachsch, WAT, and TAT Interviewing.
(ii) Principles and procedures of interviewing, gaining cooperation, motivating respondents, training of interviewers, ethics of interviewing.
PRACTICAL

(i) TAT : To administer the TAT on a subject and give summary report.
(ii) Word Association test: To administer the Jung / Kent-Rosanoff list of WAT on a subject and report on his areas of emotional difficulties.

Recommended Books

DSE-2: PSYCHOLOGY & SOCIAL ISSUES
(Credits:6, Theory-4, Practical-2)
Lectures: 60 (Theory:40, Practical:20)
Max. Marks:100(Theory:70, Practical:30)

Introduction:
Psychologists can play a larger role in the solution of important social problems. Psychology brings two important qualities to the study of social problems: attention to psychological process and rigorous methodology. The key task in the designed course is to define social problems in part as psychological problems. Learning Objectives:

1. The course will provide social psychological analysis of some major social issues in India.

Expected outcomes: Students will be able to

•

UNIT-I Understanding Social Systems
(i) Indian Family System; Social stratification; caste, class, power, Religious ethics Poverty and Deprivation.
(ii) Theories of poverty, Concomitants of poverty, Sources of deprivation, inequality and social justice.

UNIT- II Health and wellbeing
(i) Role of behavior in health problems, Short comings of the biomedical model, Behavioral sciences in disease prevention and control, Indias health scenario.

Political Behavior
(ii) Development of ideology, Use of small groups in politics, Issues of human and social development, Quality of life and development. UNIT III Antisocial Behavior
(i) Corruption and bribery, Juvenile delinquency, terrorism, Crime and criminal behavior, Alcoholism and drug abuse.
(ii) Crime and criminal behavior, Alcoholism and drug abuse, Psychopath.

UNIT IV Social integration
(i) The concept of social integration; Causal factors of social conflicts and prejudices; Psychological strategies for handling the conflicts and prejudices; Measures to achieve social integration.

Violence
(ii) Nature and categories of violence, violence in family and marriage, rape, Collective violence for social change.

PRACTICAL
(i) Quality of Life: To assess the quality of life family of 4 families using Beach Center Family Quality of Life Scale.
(ii) Community Integration: To assess the community integration of a village by using Community integration questionnaire (CIQ) of Barry Willer.

Recommended Books

SEMESTER-VI
C:13-COUNSELING PSYCHOLOGY
(Credits:6, Theory-4, Practical-2)
Lectures: 60 (Theory:40, Practical:20)
Max. Marks:100(Theory:70, Practical:30)

Introduction:
The course is designed to develop entry level counseling psychologists who will be capable of understanding and demonstrating behavior and attitudes in the basic areas of professional counseling.

Learning Objectives:
1. To help students able to understand and integrate current scientific knowledge and theory into counseling practice.

2. To make students learn the history and professional issues related to counseling psychology.

3. To help students integrate and convey information in the core areas of counseling practice.

4. To help students demonstrate professional behavior in their various roles as counseling psychologists.

Expected outcomes: Students will be able to

1. Understand the purpose of counseling and practice counseling ethically following different approaches.

2. Understand the basics of counseling process and use them for counseling students, families, couples, distressed, and handicaps.

UNIT-I Basics of Counseling
(i) Meaning, scope and purpose of counseling with special reference to India; The counseling process, counseling relationship, counseling interview.
(ii) Characteristics of a good counselor, Ethics and values in counseling; Education and training of the counselor.

UNIT- II Theories and Techniques of Counseling
(i) Psychodynamic approach-Freud and Neo Freudians; Humanistic approach-Existential and Client centered. (ii) Cognitive approach- Rational-emotive and transaction analysis; Behavioral approach- Behavior modification; Indian contribution- yoga and meditation.

UNIT III Counseling Programs
(i) Working in a counseling relationship, transference and counter transference, termination of counseling relationship, Factors influencing counseling.
(ii) Student counseling, Emphases, roles and activities of the school, and college counselor.

UNIT IV Counseling application
(i) Family and Marriage Counseling, Family life and family cycle, Models and methods of family counseling.
(ii) Alcohol and drug abuse counseling; Counseling the persons with Suicidal tendencies, and Victims of Harassment and Violence.

PRACTICAL
(i) Marital Relationship- To assess the marital relationship of 2 couples using Lerners Couple adjustment scale.
(ii) Case Reporting: To complete four case studies of high school students with problem behavior in the appropriate case record proforma.

Recommended Books
C:14-POSITIVE PSYCHOLOGY
(Credits:6, Theory-4, Practical-2)
Lectures: 60 (Theory:40, Practical:20)
Max. Marks:100(Theory:70, Practical:30)

Introduction:
Positive psychology is the scientific study of optimal human functioning to help people flourish. This is a foundation course in positive psychology to help students not only to understand the core themes of positive psychology, but also to equip them with the helpful positive interventions in various areas of professional psychology, such as clinical, health, education, organization and community.

Learning Objectives:

1. To help students to understand the rationale behind positive psychology.

2. To guide students to identify and analyze the key conceptual and theoretical frameworks underpinning positive psychology.

3. To encourage students to appreciate the contributions of scholars from a range of disciplines and their influence on developing a positive approach to mental health.
4. To make students understand and apply a strengths-based approach to mental health issues.

Expected outcomes: Students will be able to

1. The goal of positive psychology and the basic behavior patterns that result in positive human growth from the point of view of leading positive psychologists.
2. The concepts of flow and happiness and the related theories and models explaining happiness behavior and its consequences.
3. All the precursors to positive psychology from character strength and altruism to resilience.

UNIT-I: Foundations

(i) Historical roots and goals of positive psychology, Positive emotions, Positive Individual traits, and positive subjective experience.

(ii) Contribution of Martin Seligman, Albert Bandura, Carol Dweck and Abraham Maslow to positive psychology.

UNIT-II: Flow and Happiness

(i) Components of flow, Conditions and mechanisms of flow, Positive and negative consequences of flow experience.

(ii) Meaning and nature of happiness, Sources of happiness, Theories of happiness- Set-point theory, Life satisfaction and Affective state theories.

UNIT-III: Precursors to Positive Psychology

(i) Character strength, Altruism, Hope and Optimism, Positive thinking, Resilience

UNIT-IV: Ways to Positive Psychology

(i) Discovering strength, Increasing optimism, Self-direction, Purpose, gratitude, Mindfulness, and Activities and experience.

(ii) Effects of exercise, Yoga, meditation and spiritual intelligence on development of positive psychology; Positive psychology in building relationship.

PRACTICAL

(i) Happiness: To measure the happiness of 4 adults using Oxford Happiness questionnaire.

(ii) Spiritual Intelligence: To measure the spiritual intelligence of 4 adults using Kings Spiritual Intelligence test.

Recommended Books

DSE-3: CONTEMPORARY APPLIED PSYCHOLOGY
(Credits: 6, Theory-4, Practical-2)
Lectures: 60 (Theory: 40, Practical: 20)
Max. Marks: 100 (Theory: 70, Practical: 30)

Introduction:
Applied psychology is the use of psychological principles and theories to overcome problems in real life situations. Mental health, organizational psychology, counseling psychology, clinical psychology, business management, education, and law are just a few of the areas that have been influenced by the application of psychological principles and findings. Some of the current areas of applied psychology include community psychology, Psychology of the disadvantaged, psychology of economic development, population psychology, gender psychology, and defense psychology. The course is designed to help students understand the application of psychology to these new fields.

Learning Objectives:
...

Expected outcomes: Students will be able to
...

UNIT-I: Community Psychology:

(i) Definition and concept of Community Psychology; Use of small groups in social action, Arousing community consciousness, Effective strategies for social change.

(ii) Rehabilitation Psychology: Primary, secondary, tertiary rehabilitation programs, Rehabilitation of physically, mentally and socially challenged persons including the old persons
UNIT-II:

(i) **Helping the disadvantaged:** Concept of disadvantaged and deprivation, social, physical, cultural and economic consequences of disadvantaged groups, Educating and motivating the disadvantaged

(ii) **Psychology and IT:** Psychological consequences of the developments in IT; Role of psychologists in the present scenario of IT

UNIT-III:

(i) **Psychology in economic development:** Achievement motivation and Economic development; Characteristics of entrepreneurial behavior, Consumer rights and awareness

(ii) **Population psychology:** Psychological consequences of population explosion and high population density; Psychosocial effects of crowding; motivating for small family norms

UNIT-IV

(i) **Psychology of Gender:** Issues of discrimination; Glass ceiling effect, Self-fulfilling prophecy, Management of diversity

(ii) **Defense psychology:** Psychological tests for defense personnel; Promoting positive mental health of defense personnel, Human engineering in defense

PRACTICAL

(i) To assess the sense of gender equality of 8 college students by using Student Gender equality Questionnaire

(ii) To assess the attitude and knowledge of 4 women towards family planning using the Family Planning Knowledge Attitude Survey Questionnaire.

Recommended Books

DSE-4: RESEARCH PROJECT
(Credits: 6, Theory-4, Practical-2)
Lectures: 60 (Theory: 40, Practical: 20)
Max. Marks: 100 (Theory: 70, Practical: 30)

Introduction:
The research experience of students is greatly enriched by early exposure to conducting research. There are numerous benefits of undergraduate students who get involved in research. They are better off in understanding published works, determine an area of interest, can discover their passion for research and may start their career as a researcher. Further students will be able to develop an ability for scientific inquiry and critical thinking, ability in the knowledge base and communication of psychology. This course is included to promote above mentioned abilities among the students.

Learning Objectives:
1. To help students to learn how to develop scientific research designs in the study of psychology.
2. To guide students to understand the previous research in their field of interest and review them to arrive at a research problem.
3. To encourage the students to learn ways to describe and measure human behavior.
4. To help students understand the logic of hypothesis testing and application of appropriate statistical analysis.
5. To make students to learn the methods of writing a research report.

Expected outcomes: Students will be able to
1. Independently prepare a research design to carry out a research project.
2. Review the related research papers to find out a research problem and relevant hypotheses.
3. Understand the administration, scoring and interpretation of the appropriate instrument for measurement of desired behavior.
4. Learn the use of statistical techniques for interpretation of data.
5. Learn the APA style of reporting a research project.
UNIT-I: A student is required to carry out a project on an issue of interest to him / her under the guidance and supervision of a teacher. In order to do so s/he must have the knowledge in research methodology and of steps in planning and conducting a research. The supervisors may help the students to go on field study / study tour relevant to their work. Thirty hours of class may be arranged in the routine to help students understand research methodology, and planning, conduction and reporting on the research. An external examiner with the supervisor as the internal examiner will evaluate the research project on the basis of scientific methodology in writing the report, and presentation skill and performance in the viva.

Format

1. **Abstract** 150 words including problem, method and results.

2. **Introduction** Theoretical considerations leading to the logic and rationale for the present research

3. **Review** Explaining current knowledge including substantive findings and theoretical and methodological contributions to the topic, objectives and hypotheses of the present research

4. **Method** Design, Sample, Measures, Procedure

5. **Results** Quantitative analysis of group data (Raw data should not be attached in Appendix) Graphical representation of data wherever required. Qualitative analysis wherever done should indicate the method of qualitative analysis.

6. **Discussion**

7. **References (APA Style) & Appendices**

1. Project should be in Soft binding. It should be typed in Times New Roman 14 letter size with 1.5 spacing on one sides of the paper. Total text should not exceed 50 pages (References & Appendices extra).

2. Two copies of the project should be submitted to the College.

3. **Project - American Psychological Association (APA) Publication Manual 2006 to be followed for project writing**
PSYCHOLOGY (PASS)

SEMESTER-I

Paper-I: INTRODUCTORY PSYCHOLOGY
(Credits: 6, Theory: 4, Practical: 2)
Lectures: 60 (Theory: 40, Practical: 20)
Max. Marks: 100 (Theory: 70, Practical: 30)

Introduction:
The course is designed to give the student a basic understanding of the psychology of human behavior. The students will be given exposure to concepts, terminology, principles, and theories that comprise an introductory course in psychology.

Learning Objectives:
1. To help the students to know the sources and processes of development of modern scientific psychology.
2. To help the students to develop a scientific temperament in studying and understanding human behavior.

Expected outcomes: Students will be able to
1. Define the term psychology and demonstrate command of the basic terminology, concepts, and principles of the discipline.
2. Gain knowledge of scientific methodology the variety of ways in which psychological data are gathered and evaluated / interpreted.
3. Identify and compare the major perspectives in psychology: Recognize how each approach views human thought and behavior.
4. Understand the physiological and biochemical links of human behavior.

UNIT-I: Introducing Psychology
(i) Concept and definition of psychology, Roots of psychology, Psychology as a scientific discipline.
(ii) Key Perspectives in Psychology- Behavioral, Cognitive, Humanistic, Psychodynamic, and Socio-cultural.

UNIT- II: Methods in Psychology
(i) Natural Observation, Survey and Case Study- Nature, advantages and limitations.

UNIT III: Biological Bases of Behavior
(i) Structure and functions of the neurons, Communication within and between neurons, Chemical regulation of the endocrine glands.
(ii) Structure and functions of the Central nervous system and Autonomic nervous system.

UNIT-IV: States of Mind
(i) Nature of consciousness; changes in consciousness- sleep-wake schedules.
(ii) Extended states of Consciousness- Hypnosis, Meditation and Hallucinations.

Practical

1. R.L. by Method of Limits: Students are required to find out the R. L. of volar surface of the right arm of a subject by method of limits.
2. R.L. by Method of Constant Stimuli: Students are required to find out the R. L. of volar surface of the right arm of a subject by method of limits.

Recommended Books:

SEMESTER-II

Paper-II: BASIC PSYCHOLOGICAL PROCESSES
(Credits: 6, Theory: 4, Practical: 2)
 Lectures:60 (Theory:40, Practical:20)
 Max. Marks: 100 (Theory: 70, Practical: 30)

Introduction:
The course is designed to provide the student a basic understanding of the psychological processes from sensation to thought and communication. The student will be given exposure to the concepts, terminology, principles, and theories relating to each of the mental processes that constitute human
Learning Objectives:
1. To help the students to understand the mental processes to begin with sensation and perception up to how it results in thoughts and communication.
2. To help the students gather knowledge about the structural and functional dynamics of each of the mental processes and their interconnectedness.

Expected outcomes: Students will be able to
1. Understand the bases sensory actions and the processes of integration of sensory actions in creating and interpreting perceptual events.
2. Gain knowledge of the important processes and principles of human learning as well as the structural functional attributes of human memory to help conserve the learning outcomes.
3. Understand the structural and functional properties of language and the way it helps thought, communication, problem solving and decision making through development of concepts, ideas, images, and so on.

UNIT-I: Sensation and Perception
(i) Basics of sensation- Sensory receptors (eye and ear), transduction, sensory thresholds, and sensory adaptation.
(ii) Nature of perceptual process- Figure and ground, Grouping (Gestalt laws), Perceptual constancies, and illusions, Perception of distance and depth.

UNIT- II: Learning and Memory
(i) Nature and principles of Classical conditioning, Operant conditioning, and Observational learning.
(ii) The Atkinson and Shiffrin Model of Memory; Types of Memory- episodic, semantic and procedural; Causes of Forgetting- interference, repression, and amnesia.

UNIT III: Language and Communication
(i) Properties and structure of language, Linguistic hierarchy, Language acquisition-predisposition, Nature of effective communication.
(ii) Stages of language development; critical period controversy; speech error and its implications.

UNIT IV: Thinking and Reasoning
(i) Thinking process; concepts, categories and prototypes, Decision making and factors of influencing decision making.
(ii) Inductive and deductive reasoning; Problem solving approaches; Steps in problem solving.

Practical
1. Learning Curve: To demonstrate the Learning Curve as a function of Learning trials using Nonsense Syllables.
2. Serial Position Effect: To demonstrate the serial position effect on memory in learning a list of nonsense syllables.

Recommended Books:

SEMESTER-II

GE-I: INTRODUCTORY PSYCHOLOGY

(Credits: 6, Theory: 4, Practical: 2)

Lectures:60 (Theory:40, Practical:20)

Max. Marks: 100 (Theory: 70, Practical: 30)

Introduction:

The course is designed to give the student a basic understanding of the psychology of human behavior. The students will be given exposure to concepts, terminology, principles, and theories that comprise an introductory course in psychology.

Learning Objectives:

1. To help the students to know the sources and processes of development of modern scientific psychology.
2. To help the students to develop a scientific temperament in studying and understanding human
behavior.

Expected outcomes: Students will be able to
1. Define the term psychology and demonstrate command of the basic terminology, concepts, and principles of the discipline.
2. Gain knowledge of scientific methodologythe variety of ways in which psychological data are gathered and evaluated / interpreted.
3. Identify and compare the major perspectives in psychology: Recognize how each approach views human thought and behavior.
4. Understand the physiological and biochemical links of human behavior.

UNIT-I: Introducing Psychology
(i) Concept and definition of psychology, Roots of psychology, Psychology as a scientific discipline.
(ii) Key Perspectives in Psychology- Behavioral, Cognitive, Humanistic, Psychodynamic, and Sociocultural.

UNIT- II: Methods in Psychology
(i) Natural Observation, Survey and Case Study- Nature, advantages and limitations.

UNIT III: Biological Bases of Behavior
(i) Structure and functions of the neurons, Communication within and between neurons, Chemical regulation of the endocrine glands.
(ii) Structure and functions of the Central nervous system and Autonomic nervous system.

UNIT-IV: States of Mind
(iii) Nature of consciousness; changes in consciousness- sleep-wake schedules.
(iv) Extended states of Consciousness- Hypnosis, Meditation and Hallucinations.

Practical
1. R.L. by Method of Limits: Students are required to find out the R. L. of volar surface of the right arm of a subject by method of limits.
2. R.L. by Method of Constant Stimuli: Students are required to find out the R. L. of volar surface of the right arm of a subject by method of limits.

Recommended Books:
Introduction:
The course is designed to equip students with knowledge in the fundamentals of statistics and research methods so that they understand the application of statistics to different research problems in psychology.

Learning Objectives:
1. To help students develop knowledge and understanding of the application of Statistics within Psychology.
2. To help students develop Critical Thinking for application of appropriate statistical analysis in Psychological research.

Expected outcomes: Students will be able to understand
1. The nature psychological variables and how to measure them with appropriate scale.
2. The processes of describing and reporting statistical data.
3. The methods of drawing inferences and conclusions for hypothesis testing by using appropriate statistical analysis.

UNIT-I: Fundamentals of statistics
(i) Meaning and scope of statistics, Nature of variables- Categorical and Continuous, Levels of Measurement- Nominal, Ordinal, Interval, and Ratio.
(ii) Drawing frequency distribution; Graphical representation of grouped data-Polygon, Histogram, Ogive.

UNIT- II: Measures of Statistics
(i) Measures of Central Tendency- Characteristics of mean, median and mode; Computation of mean, median, and mode.
(ii) Measures of Variability- Concept of variability, computation of semi-inter quartile range, Standard deviation and variance, Co-efficient of variation.

UNIT III: Sources and Applications
(i) Concept of Probability; Characteristics of Normal Probability curve, Applications of NPC, Deviation from NPC- Skewness and Kurtosis.
(ii) Concept of correlation, Product-moment correlation (ungrouped data), Rank order correlation, Chi-square test (Contingency Table).

UNIT -IV: Hypothesis Testing
(i) Level of significance; Type I and Type II error; Computation of t for independent and dependent samples, The Mann-Whitney U test.
(ii) Purpose and assumptions of ANOVA; One-way and two-way ANOVA; Kruskal-Wallis H test.

Practical
1. Reporting of Statistical Results: To collect data of 60 (30 boys and 30 girls) High School students about their Annual examination marks in four subjects and to report by descriptive statistical analyses.
2. Computer Awareness: To be familiar with software packages of statistics and their applications.

Recommended Books:
Introduction:
Psychopathology refers to the study of mental illness. This course is designed to expose students to the key concepts in psychopathology as well as the major theories associated with the etiology and treatment of psychological disorders and disabilities. Students will be able to understand the distinction between normal and abnormal and the qualities that are used to differentiate what is typical versus atypical through citations of different disorders.

Learning Objectives:
1. To help students define and understand the basic concepts underlying psychopathology and the perspectives which contributed to the development of modern psychopathology.
2. To help students understand the assessment techniques for identifying and classifying maladaptive behavior and mental disorders.
3. To guide students to gain specific knowledge about different types of mental disorders.

Expected outcomes: Students will be able to

1. Understand the differences between normality and abnormality along with the perspectives explaining them.
2. Know the importance and the use of assessment techniques in identifying different forms of maladaptive behavior.
3. Learn the symptoms, causes and treatment of anxiety disorders, mood disorders and schizophrenia.

UNIT-I: Basics of Pathology
(i) Concept of abnormality; Perspectives of abnormal behavior- Psychodynamic, Behavioral, Cognitive, Humanistic-Existential, and Sociocultural.
(ii) Classification of maladaptive behavior-DSM-IV; Assessment techniques- Diagnostic tests, Rating scales, History taking interview, Projective tests.

UNIT-II: Anxiety and Mood disorder
(i) Symptoms, causes and treatment of Generalized anxiety disorder, Phobic disorder, Obsessive-Compulsive disorder.
(ii) Depressive disorder Symptoms, causes and treatment of Bipolar affective disorder, and Dys-thymia.

UNIT-III: Personality Disorders
(i) Paranoid, Schizoid, Dissociative, Impulsive.
(ii) Borderline, Anxious, Avoidance, Dependent personality.

UNIT-IV: Schizophrenia and Therapies
(i) Characteristics, Major subtypes, Causes and treatment of Schizophrenia.
(ii) Psychodynamic, and Cognitive Behavior therapy.

Practical
1. Anxiety: Assessment of Anxiety of a subject by Hamilton Anxiety Rating Scale (HARS).
2. Depression: Assessment of Depression Profile of a subject by Becks Depression Inventory (BDI).

Recommended Books:
Introduction:
Psychopathology refers to the study of mental illness. This course is designed to expose students to the key concepts in psychopathology as well as the major theories associated with the etiology and treatment of psychological disorders and disabilities. Students will be able to understand the distinction between normal and abnormal and the qualities that are used to differentiate what is typical versus atypical through citations of different disorders.

Learning Objectives:
1. To help students define and understand the basic concepts underlying psychopathology and the perspectives which contributed to the development of modern psychopathology.
2. To help students understand the assessment techniques for identifying and classifying maladaptive behavior and mental disorders.
3. To guide students to gain specific knowledge about different types of mental disorders.

Expected outcomes: Students will be able to
1. Understand the differences between normality and abnormality along with the perspectives explaining them.
2. Know the importance and the use of assessment techniques in identifying different forms of maladaptive behavior.
3. Learn the symptoms, causes and treatment of anxiety disorders, mood disorders and schizophrenia.

UNIT-I: Basics of Pathology
(i) Concept of abnormality; Perspectives of abnormal behavior- Psychodynamic, Behavioral, Cognitive, Humanistic-Existential, and Sociocultural.
(ii) Classification of maladaptive behavior-DSM-IV; Assessment techniques- Diagnostic tests, Rating scales, History taking interview, Projective tests.

UNIT-II: Anxiety and Mood disorder
(i) Symptoms, causes and treatment of Generalized anxiety disorder, Phobic disorder, Obsessive-Compulsive disorder.
(ii) Depressive disorder Symptoms, causes and treatment of Bipolar affective disorder, and Dysthymia.

UNIT-III: Personality Disorders
(i) Paranoid, Schizoid, Dissociative, Impulsive.
(ii) Borderline, Anxious, Avoidance, Dependent personality.
UNIT -IV: Schizophrenia and Therapies
(i) Characteristics, Major subtypes, Causes and treatment of Schizophrenia.
(ii) Psychodynamic, and Cognitive Behavior therapy.

Practical
1. Anxiety: Assessment of Anxiety of a subject by Hamilton Anxiety Rating Scale (HARS).
2. Depression: Assessment of Depression Profile of a subject by Becks Depression Inventory (BDI).

Recommended Books:
 tions Pvt. Ltd.

SEMESTER-V

DSE-I : ORGANIZATIONAL BEHAVIOR
(Credits: 6, Theory: 4, Practical: 2)
Lectures:60 (Theory:40, Practical:20)
Max. Marks: 100 (Theory: 70, Practical: 30)
Introduction:
The course provides an overview of the main fields of organizational and personnel psychology. It focuses on topics such as organizational system; work behavior, attitudes and motivation as related to organizational set up; management of power and politics in the organizations; and finally development and evaluation of human resources for sustainable growth of an organizations.

Learning Objectives:
1. To help students able to understand the structure, functions, and designs of different organizations.
2. To make students understand the processes of group decision making and leadership functions in different organizations.
3. To make students understand the theories of work motivation and related issues of power and politics in the organizational set up.
4/. To help students demonstrate professional skills in the evaluation, management, and development of human resources in the organizations.

Expected outcomes: Students will be able to

1. Understand different concepts and dynamics related to organizational system, behavior, and management.
2. Identify steps managers can take to motivate employees in the perspectives of the theories of work motivation.
3. Understand the tricks of power and politics management in the organizations.
4. Understand significance of human resource development, evaluation and management for the interest and benefit of the organization.

UNIT-I: Historical context of organizational behavior
(i) Contributions of Taylor, Weber and Fayoll; Challenges, Scope and opportunities for OB.
(ii) OB perspectives-Open system approach, Human relations perspective, Socio-technical approach, OB model responsive to Indian realities.

UNIT-II: Organization System
(i) Structure and functions of organization, Common organizational designs, Management roles, functions and skills.
(ii) Group decision making processes in organizations, Organizational leadership and types of leadership in organizations.

UNIT-III: Work, Power and Politics
(i) Contemporary theories of work motivation- ERG theory, McClellands theory of needs, Cognitive evaluation theory, Goal-setting theory, Reinforcement theory.
(ii) Defining power in organization, Bases of power, Power tactics, Nature of organizational politics, Impression management, and defensive behavior.
UNIT-IV: Human resource development and Evaluation

(i) Human Skills and Abilities, Selection Practices for Optimal Use of Human Resources; Training Programs for the Development of Human Resources.

(ii) Performance Evaluation- Purpose, Methods, Potential Problems and methods to overcome them.

Practical

1. Leadership Style: To measure his basic leadership style of 4 college students by using Greenberg Basic Leadership Style scale.

2. Conflict-Handling: To measure the conflict-handling style of 4 college students by using Rahims scale to identify their conflict handling style.

Recommended Books:

SEMESTER-VI

DSE-II : COUNSELING PSYCHOLOGY

(Credits: 6, Theory: 4, Practical: 2)
Lectures:60 (Theory:40, Practical:20)
Max. Marks: 100 (Theory: 70, Practical: 30)

Introduction:
The course is designed to develop entry level counseling psychologists who will be capable of understanding and demonstrating behavior and attitudes in the basic areas of professional counseling.
Learning Objectives:
1. To help students able to understand and integrate current scientific knowledge and theory into counseling practice.
2. To make students learn the history and professional issues related to counseling psychology.
3. To help students integrate and convey information in the core areas of counseling practice.
4. To help students demonstrate professional behavior in their various roles as counseling psychologists.

Expected outcomes: Students will be able to
1. Understand the purpose of counseling and practice counseling ethically following different approaches.
2. Understand the basics of counseling process and use them for counseling students, families, couples, distressed, and handicaps.

UNIT-I: Basics of Counseling
(i) Meaning, scope and purpose of counseling with special reference to India; The counseling process, counseling relationship, counseling interview.
(ii) Characteristics of a good counselor, Ethics and values in counseling; Education and training of the counselor.

UNIT-II: Theories and Techniques of Counseling
(i) Psychodynamic approach-Freud and Neo Freudians; Humanistic approach-Existential and Client centered.
(ii) Cognitive approach- Rational-emotive and transaction analysis; Behavioral approach- Behavior modification; Indian contribution- yoga and meditation.

UNIT-III: Counseling Programs
(i) Working in a counseling relationship, transference and counter transference, termination of counseling relationship, Factors influencing counseling.
(ii) Student counseling, Emphases, roles and activities of the school, and college counselor.

UNIT-IV: Counseling application
(i) Family and Marriage Counseling, Family life and family cycle, Models and methods of family counseling.
(ii) Alcohol and drug abuse counseling; Counseling the persons with Suicidal tendencies, and Victims of Harassment and Violence.

Practical
1. Marital Relationship- To assess the marital relationship of 2 couples using Lerners Couple adjustment scale.
2. Case Reporting: To complete four case studies of high school students with problem behavior in the appropriate case report proforma.

Recommended Books:

STATISTICS (HONOURS)

SEMESTER-I

C:1-DESCRIPTIVE STATISTICS-I & LINEAR ALGEBRA

(Credits: 6, Theory-4, Practical-2)
Lectures: 60 (Theory:40, Practical:20)
Max. Marks: 100 (Theory:70, Practical:30)

UNIT-I:
Statistical Methods: Definition & scope of Statistics, concepts of Statistical population and sample, quantitative and qualitative data, attributes, variables, scales of measurement—nominal, ordinal, interval and ratio. Presentation: tabular and graphical including histogram and ogives.

UNIT-II:
Measures of Central Tendency: mathematical and positional. Measures of Dispersion: range, quartile deviation, standard deviation, coefficient of variation, Moments, absolute moments, skewness and kurtosis, Shephards correction.

UNIT-III:
Permutation & Combination, Binomial Theorem, Logarithmic & Exponential Series, Determinant.

UNIT-IV:
Matrices: types of matrices (orthogonal matrix and idempotent matrix); operation on matrices (including inverse); partitioned matrices; singular and non-singular matrices. Rank of a matrix: row-rank and column-rank; properties of rank; rank of sum and product of matrices.

UNIT-V:

PRACTICAL

1. Calculation of different measures of Central tendency, dispersion, skewness and kurtosis.
2. Calculation of Ist. Four moments from grouped and ungrouped data.

Recommended Books:
UNIT-I:
Bivariate Data: Definition, Curve fitting by the method of least squares (linear, quadratic and exponential), fitting of curves reducible to polynomials by log and inverse transformation.

UNIT-II:
Correlation Coefficient: Scatter diagram, Product moment correlation coefficient and its properties (for grouped and ungrouped data), coefficient of determination, correlation ratio, rank correlation, intra class correlation.

UNIT-III:
Regression Analysis: Concept of regression, fitting of regression lines, regression coefficients and their properties.

UNIT-IV:
Function of one variable; limit, continuity and differentiability; successive differentiation; mean value theorem (statement only); maxima and minima.
Function of Several Variables: Partial derivatives, transformations and Jacobians.

UNIT-V:
Integral Calculus: Review of Integration (algebraic, trigonometric, logarithmic and exponential functions) and definite integral, Algebra of integration, differentiation under Integral sign. Differential equations of first order and first degree (variable-separation method).

PRACTICAL
1. Fitting of 1st., 2nd. degree polynomial and exponential curve.
2. Calculation of simple correlation coefficient, regression lines, rank correlation coefficient (for grouped and ungrouped data).

Recommended Books:
UNIT-I:
Random experiment: trials, sample point and samples space, event, operations of events, concept of mutually exclusive and exhaustive events.
Definition of Probability: Classical, relative frequency and axiomatic approach; discrete and continuous probability space, addition law of probability.

UNIT-II:
Multiplication law of probability, conditional probability and independence of events, Bayes theorem and its applications.

UNIT-III:

UNIT-IV:
Lagranges interpolation formulae, inverse interpolation, central difference formula.

UNIT-V:
Numerical differentiation (Euler’s method), Numerical integration: Trapezoidal, Simpson’s one-third, three-eighth rules.

PRACTICAL
1. Interpolation with equal intervals, unequal intervals using Lagranges and Newton’s formula.
2. Problems on central difference formula.
3. Problems on numerical differentiation and integration.

Recommended Books:

C:4-PROBABILITY-II & DESCRIPTIVE STATISTICS-III
(Credits: 6, Theory-4, Practical-2)
Lectures: 60 (Theory:40, Practical:20)
Max. Marks:100(Theory:70, Practical:30)

UNIT-I:
Random variables: Definition, properties, probability mass function, probability density function; distribution function, Bivariate random variables, joint, marginal and conditional distributions.

UNIT-II:
Mathematical expectation of a random variable and its properties, Mean and variance of a random variables, probability generating function, moment generating function and cumulant generating function. Conditional expectation and conditional variance.
UNIT-III:
Characteristic function (simple applications), uniqueness theorem, convergence of random variables, convergence in probability, convergence in distribution. Hally-Bray theorem (without proof) and its application.

UNIT-IV:
Multivariate Data: Multiple and Partial correlations (Yules Notation) and plane of regression (three variables only). Properties of residuals, coefficient of multiple and partial correlation and their properties.

UNIT-V:
Analysis of categorical Data: Consistency of categorical data, independence and association of attributes. Yules coefficient, coefficient of colligation.

PRACTICAL
1. Problems on multiple and partial correlation and regression.
2. Problems on theory of attributes (consistency, coefficient of association).

Recommended Books:

SEMESTER-III

C:5-PROBABILITY DISTRIBUTIONS
(Credits:6, Theory-4, Practical-2)
Lectures: 60 (Theory:40, Practical:20)
Max. Marks:100(Theory:70, Practical:30)

UNIT-I:
Discrete probability distributions: Uniform, Bernoulli, Binomial, Poisson, Negative Binomial, Geometric, Hyper geometric and their properties.

UNIT-II:
Continuous probability distributions: Uniform, Normal, Beta, Gamma, Exponential, Cauchy and their properties.

UNIT-III:
Exact sampling distributions: Chi-square, Students t, Fishers t and Snedecors F and relationship between t ,F and χ^2.

UNIT-IV:
Weak law of large numbers: Bernoullis WLLN, Chebyshevs inequality, Chebychevs WLLN, Poissons WLLN and applications.

UNIT-V:
Strong Law of large numbers, Kolmogorovs SLLN (Statement only). Central limit theorem, Lindeberg-Levy theorem and applications.
PRACTICAL

1. Fitting of Binomial, Poisson, Fitting of normal distribution.

Recommended Books:

C:6-SAMPLING DISTRIBUTION & BASICS OF COMPUTER
(Credits:6, Theory-4, Practical-2)
Lectures: 60 (Theory:40, Practical:20)
Max. Marks:100(Theory:70, Practical:30)

UNIT-I:
Concept of population, sample, parameter, statistic and sampling distribution; standard error, standard error of moments, distribution of sample mean and variance from normal distribution.

UNIT-II:
Tests of significance based on large sample: the normal test of significance (Z-test) for both one-sample and two-sample problems for mean, proportion and standard deviation.

UNIT-III:
Small sample tests: Tests of significance based on exact sampling distributions, i.e. χ², t and F distributions.

UNIT-IV:

UNIT-V:
Application Software: Concept of Word Processing, Use of MS-Office: MS Word, MS Excel, PowerPoint. Introduction to R, C and SPSS.

PRACTICAL

1. Tests of significance based on Normal distribution , Chi-square, t , F distribution.

Recommended Books:

C:7-THEORY OF ESTIMATION
UNIT-I:

UNIT-II:

UNIT-III:

UNIT-IV:
Interval Estimation: Concepts of confidence interval and confidence coefficient, confidence intervals for the parameters of univariate normal distribution.

UNIT-V:
Theory of linear estimation, concept of Gauss Markov linear model (full rank case), Estimation of parameters in linear models.

PRACTICAL

1. Methods of estimations.
2. Estimation of parameters in linear models.

Recommended Books:

SEMESTER-IV

C:8-THEORY OF ESTIMATION
(Credits:6, Theory-4, Practical-2)
Lectures: 60 (Theory:40, Practical:20)
Max. Marks:100(Theory:70, Practical:30)

UNIT-I:
Statistical Hypotheses: Simple and composite, statistical tests, critical region, type-I and type-II error, size and power of a test, definition of Most powerful (MP), Uniformly Most Powerful(UMP) and Uniformly Most Powerful Unbiased (UMPU) tests.

UNIT-II:
Neyman-Pearson lemma and its applications in testing of hypothesis based on Binomial, Poisson
and Normal distributions.

UNIT-III:
Tests of composite hypothesis: likelihood ratio test and problems based on LR test.

UNIT-IV:

UNIT-V:
Non-parametric inferences: Wald-Wolfowitz runs test, U statistic, Mann-Whitney U-test, Kolmogorov-Smirnov one sample and two sample tests.

PRACTICAL

1. Problems on Sign Test (One sample and paired sample) Run test. Mann whitney U test, Kolmogorov-Smirnov tests.

Recommended Books:

C:9-SAMPLING THEORY
(Credits:6, Theory-4, Practical-2)
Lectures: 60 (Theory:40, Practical:20)
Max. Marks:100 (Theory:70, Practical:30)

UNIT-I:
Population and sample, sampling versus census, steps involved in sample surveys, principles of sample survey. Advantages and disadvantages of sampling, Sampling and non-sampling errors.

UNIT-II:

UNIT-III:
Stratified Random Sampling: Advantages & disadvantages, uses, allocation of sample sizes into various strata: proportional and optimum, estimation of mean, total and variance of the estimate.

UNIT-IV:
Systematic sampling: Advantages and disadvantages, uses, drawing of systematic samples, estimation of mean and variance. Systematic sampling versus stratified random sampling, systematic sampling when the population consists of a linear trend.

UNIT-V:
Ratio, product and regression methods of estimation, estimation of mean and variance of the estimate, comparison of efficiencies.

PRACTICAL
1. Problems on SRS, Stratified R.S, systemic sampling.

Recommended Books:

C:10-INDEX NUMBER & LINEAR PROGRAMMING
(Credits:6, Theory-4, Practical-2)
Lectures: 60 (Theory:40, Practical:20)
Max. Marks:100 (Theory:70, Practical:30)

UNIT-I:
Index numbers: Introduction, uses & types. Base year and current year, price relatives and quantity relatives. Problems involved in construction of index number. Unweighted and weighted index number, Laspeyres, PaaschesDorbish-Browley, Fishers ideal index number.

UNIT-II:
Criteria of good index number: Unit, Time Reversal, Factor Reversal & Circular tests, cost of living index number, its construction: Aggregate Expenditure & Family Budget method and uses, fixed base and chain base index numbers, base shifting, splicing and deflating.

UNIT-III:

UNIT-IV:
Procedure of solving LPP by graphical method, Definition of Feasible solution, basic feasible solution, Slack and surplus variables, simplex method Big M method.

UNIT-V:
Duality; Primal dual conversion, Dual-simplex method, advantages of duality, game theory concept, two person zero-sum game.

PRACTICAL
2. Time reversal Tests consumer price index number.
3. LPP by Graphical method.

Recommended Books:
SEMESTER-V

C:11-STATISTICAL QUALITY CONTROL & OFFICIAL STATISTICS
(Credits:6, Theory-4, Practical-2)
Lectures: 60 (Theory:40, Practical:20)
Max. Marks:100(Theory:70, Practical:30)

UNIT-I:
Meaning and uses of Statistical Quality control(SQC), control chart variables, Process and product control, chance and assignable causes of variation, 3- sigma control limits, \bar{X}, R and σ charts. Control chart for attributes, p-chart, d-chart, c-chart and their interpretations.

UNIT-II:
Natural tolerance limit and specification limit, acceptance sampling by attributes, AQL, LTPD, AOQL & ASN consumers risk and producers risk, O.C. curve. Idea about single and double sampling plans.

UNIT-III:
Present official Statistical System in India. Methods of collection of official statistics, their reliability and limitations.

UNIT-IV:
Idea about population statistics, Agricultural, Yield and Area statistics.

UNIT-V:
Population census, Introductory ideas about National level surveys viz., NFHS, DLHS, AHS.

PRACTICAL

1. Computation of \bar{X}-Chart, R Chart and σ-charts.
2. Computation of p- Chart.

Recommended Books:

C:12-VITAL STATISTICS
(Credits:6, Theory-4, Practical-2)
Lectures: 60 (Theory:40, Practical:20)
Max. Marks:100(Theory:70, Practical:30)

UNIT-I:
death rate, age-specific death rates, IMR, standardized death rate, Direct and indirect method of standardization and uses.

UNIT-II:
Mortality table or Life table, its uses, columns of life table, assumptions, and construction of life table, Abridged life table (Reed Merell).

UNIT-III:
Measurement of fertility: crude birth rate, general fertility rate, age-specific birth rate, total fertility rate, gross reproduction rate, net reproduction rate.

UNIT-IV:
Population Census: Methods of census, salient features, its uses and problems, registration method, sample surveys, sources of demographic data.

UNIT-V:
Population Estimation and projection, need and uses, methods of population estimation & projection.

PRACTICAL

1. Calculation of different measures of mortality and fertility.
2. Construction of Life table.

Recommended Books:
4. Techniques of Demographic analysis, K.B. Pathak and F.Ram, Himalaya publication.

SEMESTER-VI

C:13-DESIGN OF EXPERIMENTS
(Credits:6, Theory-4, Practical-2)
Lectures: 60 (Theory:40, Practical:20)
Max. Marks:100(Theory:70, Practical:30)

UNIT-I:

UNIT-II:
Completely Randomised Design, Layout and complete analysis of CRD. Advantages and uses. Randomized Block Design, Layout and complete analysis, Missing plot technique in RBD with analysis. Efficiency of RBD, with respect to CRD. Advantages and uses.

UNIT-III:
Latin square Design, and its analysis Estimation of missing value in LSD and analysis. Comparison
of efficiency with RBD and CRD.

UNIT-IV:
Factorial Experiments: Introduction, advantages & disadvantages, main and interaction effects, Yates method of computing factorial effect totals. Analysis of 2^2, 2^3 and 2^4 factorial design.

UNIT-V:
Confounding in factorial experiments: Total and partial confounding in 2^3 and 2^4 factorial experiment.

PRACTICAL

1. Analysis of CRD, RBD and LSD.
2. One Missing plot technique in RBD, LSD with analysis.
3. Analysis of 2^2 and 2^3 factorial experiments.
4. Confounding in 2^3 and 2^4 factorial experiment.

Recommended Books:
3. Estimation of elasticity.
4. Engels curve.
5. Pareto curve.

Recommended Books:
DISCIPLINE SPECIFIC ELECTIVE (DSE)

For the Discipline Specific Elective (DSE), a student has to choose any three papers (STAT-DSE-501, STAT-DSE-502, STAT-DSE-601) from the following six papers (two papers in Fifth semester and one paper in Sixth Semester) and a project work (STAT-DSE-602) in Sixth Semester.
1. Time Series Analysis.
2. Biostatistics.

SEMESTER-V

1. TIME SERIES ANALYSIS
 (Credits:6, Theory-4, Practical-2)
 Lectures: 60 (Theory:40, Practical:20)
 Max. Marks:100(Theory:70, Practical:30)

UNIT-I:
Time Series: Introduction to time series data and application in various fields, Components of time series, Methods of measuring secular trend: graphic, semi-average, Moving average method.

UNIT-II:

UNIT-III:

UNIT-IV:

UNIT-V:
Different schemes which account for oscillations in a stationary time series. Auto regressive series of first and second order, Serial correlation and correlogram, lag correlation.

PRACTICAL

2. Problems on Spencers 15- point and 21- point formula.
2. BIO-STATISTICS

(Credits: 6, Theory-4, Practical-2)

Lectures: 60 (Theory: 40, Practical: 20)
Max. Marks: 100 (Theory: 70, Practical: 30)

UNIT-I:

UNIT-II:
Statistical Genetics: Basic terminology of genetics. Frequencies of genes and genotypes. Mendles law, Hardy-Weinberg equilibrium, mating frequencies estimation, allele frequency.

UNIT-III:

UNIT-IV:
Survival Analysis: Survival function and hazard rates. Types of censoring and likehood in these cases. Life time distributions-Exponential, Gamma, Weibull, Longnormal.

UNIT-V:
Epidemiology: Introduction to epidemiology, principles of epidemiological investigations, surveillance and disease monitoring in population.

PRACTICAL

2. Fitting exponential growth module to data by linearization method.
3. Fitting logistic growth module.

Recommended Books:
3. POPULATION STUDIES
(Credits:6, Theory-4, Practical-2)
Lectures: 60 (Theory:40, Practical:20)
Max. Marks:100(Theory:70, Practical:30)

UNIT-I:
Measures of Population Change and Distribution: Introduction, rate of population change, doubling time for a population; population distribution: Population density, percentage distribution by rural-urban category, Lorenz curve and Gini concentration ratio.

UNIT-II:
Analysis of Age Distribution: Percent distribution and percent change in distribution, index of relative difference and dissimilarity; Graphic representation of age data: Time series chart and population pyramid, measurement of ageing of population.

UNIT-III:
Quality of Population Data: Introduction, Whipples Index, Myers Blended Index, UN Joint Index.

UNIT-IV:
The Malthusion Theory of Population: The theory, criticisms, applicability, Neo-Malthusion theory.
Optimum Theory of Population: Introduction, definition, assumptions, the theory, its superiority over the Malthusion theory its criticisms.
Karl Marx's Theory of surplus population; Introduction, definition, its criticisms.

UNIT-V:
Theory of Demographic Transition: Introduction, explanation, its criticisms.
National Family Health Surveys (NFHS-1 & NFHS-2) and Household Economic Behaviour.

PRACTICAL
1. Measures of population concentration by Gini concentration ratio.
2. Construction of population pyramid.
3. Computation of Whipples index and Myres Blended index.

Recommended Books:
2. Basic Demographic Techniques and Application By K. Srinivasan, Sage Publication.

4. ACTUARIAL STATISTICS
(Credits:6, Theory-4, Practical-2)
Lectures: 60 (Theory:40, Practical:20)
Max. Marks:100(Theory:70, Practical:30)

UNIT-I:
Utility theory, insurance and utility theory, models for individual claims and their sums, survival
function, curate future life time, force of mortality.

UNIT-II:
Life table and its relation with survival function examples, assumptions of fractional ages, some analytical laws of mortality.

UNIT-III:
Multiple life functions, joint life and last survivor status, insurance and annuity benefits, evaluation for special mortality laws.

UNIT-IV:
Elements of compound interest, life annuities; single payment, continuous life annuities, discrete life annuities.

UNIT-V:
Net premiums: continuous and discrete premiums, true monthly payment premiums, apportionate premiums, commutation functions and accumulation type benefits.

PRACTICAL

1. Computation of values of utility function.
2. Computation of various components of life table.
4. Determination of distribution function, survival function and force of mortality.
5. Computation of discrete and continuous net premiums.

Recommended Books:

5. OPERATIONS RESEARCH
(Credits:6, Theory-4, Practical-2)
Lectures: 60 (Theory:40, Practical:20)
Max. Marks:100(Theory:70, Practical:30)

UNIT-I:
Solution to Linear Programming Problems by simplex method, Big M-Method, Two-phase simplex method.

UNIT-II:
Duality: Introduction, formulation, determination of dual, Primal to dual and vice-versa.

UNIT-III:
Transportation Problems: Introduction and mathematical formulation definition of important terms initial basic feasible solution by north-west corner rule, least cost method and Vogels approximation method.

UNIT-IV:
Networking: Introduction, basic terms, rules of network construction, numbering the events, forward pass and backward pass computations. Critical Path Method (CPM), Floats & Slacks.

UNIT-V:
Simulation; Types of simulation generation of random numbers by mid-square and congruential methods, Monte-Carlo simulation.

PRACTICAL

1. Solution of LPP by simplex method, Big-M Method and two-phase method.
2. Finding out dual from primal and vice-versa.
3. Computation of initial basic feasible solution to a transportation problem by north-west corner rule, least cost and Vogels approximation method.

Recommended Books:
UNIT-I:
What is Econometrics? Methodology of econometrics, statement of theory or hypothesis, specification of the mathematical and econometric models of consumption, estimation of the econometric model, hypothesis testing, forecasting or prediction, use of the model for control or policy purpose.

UNIT-II:
The modern interpretation of the term regression, Statistical Vs deterministic relationships, regression Vs causation and correlation, nature and sources of data for econometric analysis, accuracy of data.

UNIT-III:
Two-variable regression analysis: Some basic ideas, a hypothetical example concept of population regression function (PRF), meaning of the term linear, linearity in the variable and parameters, stochastic specification of PRF, significance of the stochastic disturbance, sample regression function.

UNIT-IV:

PRACTICAL
1. Estimation of the econometric model.
2. Computation of sample regression function.
3. Computation of coefficient of determination r^2, its interpretation.

Recommended Books:

SEMESTER-VI

PROJECT
EXTERNAL ASSESSMANT
(Credits:6, Theory-4, Practical-2)
Lectures: 60 (Theory:40, Practical:20)
Max. Marks:100(Theory:70, Practical:30)

The project work shall be spread over the whole semester. A project may be undertaken by the students with the consultation of the faculties. However, the project report shall be submitted by
each member of the group separately for evaluation. A project report shall clearly state the problem addressed, the methodology adopted, the assumptions and the hypotheses formulated, any previous reference to the study undertaken, statistical analyses performed and the broad conclusion drawn.

INTERNAL ASSESSMENT
The candidate is required to present the synopsis of his/her project work before the teachers of the department.

SEMESTER-I

GE-1: STATISTICAL METHODS-I
(Credits:6, Theory-4, Practical-2)
Lectures: 60 (Theory:40, Practical:20)
Max. Marks:100(Theory:70, Practical:30)

UNIT-I:
Ideas about types of data, collection, classification and tabulation of data. Frequency distributions: graphic and diagrammatic representation of data.

UNIT-II:
Measures of central tendency: arithmetic mean, geometric mean & harmonic mean their properties & applications. Median & mode & other partition values: quartiles, deciles, percentiles and graphic presentation.

UNIT-III:
Measures of dispersion: range, quartile deviation, mean deviation, standard deviation & variance, coefficient of variation. Moments, skewness and kurtosis.

UNIT-IV:
Bivariate data: scatter diagram, curve fitting by method of least squares(straight line and second degree), product moment correlation coefficient and its properties, coefficient of rank correlation.

UNIT-V:
Concept of regression, fitting of regression lines, regression coefficients, their properties, angle between two regression lines.

PRACTICAL

1. Computation of different measures of central tendency & dispersion.
2. Computation of moments.
3. Curve fitting by least squares method.
5. Computation of rank correlation.
6. Fitting of Regression lines.

Recommended Books:
SEMESTER-II

GE-2: APPLIED STATISTICS
(Credits:6, Theory-4, Practical-2)
Lectures: 60 (Theory:40, Practical:20)
Max. Marks:100(Theory:70, Practical:30)

UNIT-I:
Random experiment: trials, sample point and samples space, event, operations of events, concept
of mutually exclusive and exhaustive events.
Definition of Probability: Classical, relative frequency and axiomatic approach; discrete and contin-
uous probability space, addition law of probability, Multiplication law of probability.

UNIT-II:
Time Series: Introduction to time series data and application in various fields, Components of time
series, Methods of measuring secular trend: graphic, semi-average, Moving average method.

UNIT-III:
Estimating trend by Iterated averages. Measurement of trend by least squares method: by fitting
Polynomials of 1st & 2nd Degree, exponential, modified exponential, logistic, Gompertz curve.

UNIT-IV:
Index numbers: Introduction, uses & types. Base year and current year, price relatives and quantity
relatives. Problems involved in construction of index number. Unweighted and weighted index
number, Lasplaysers, Paasches Dorbish-Browley, Fishers ideal index number.

UNIT-V:
Criteria of good index number: Unit, Time Reversal, Factor Reversal & Circular tests, cost of living
index number, its construction: Aggregate Expenditure & Family Budget method and uses, fixed
base and chain base index numbers, base shifting, splicing and deflating.

PRACTICAL

1. Fitting of Binomial & Poisson distribution.
2. Determination of area under Normal Probability curve.

Recommended Books:
SEC-1: COMMUNICATIVE ENGLISH & ENGLISH WRITING
 SKILL (Compulsory)
 (Credits: Theory-02)

SEMESTER-IV

SEC-2: STATISTICAL TECHNIQUES FOR RESEARCH METHODS
 (Credits:6)
 Lectures: 60
 Max. Marks:100

UNIT-I:
Introduction: Meaning, objection and motivation in research, types of research, research approach, significance of research. Research problems: definition, selection and necessity of research problems.

UNIT-II:
Survey Methodology and Data Collection, inference and error in surveys, the target populations, sampling frames and coverage error, methods of data collection, non-response, questions and answers in surveys.

UNIT-III:
Processing, Data Analysis and Interpretation: Review of various techniques for data analysis covered in core statistics papers, techniques of interpretation, precaution in interpretation.

Recommended Books:
STATISTICS (PASS)

SEMESTER-I

DSC-ST-A: STATISTICAL METHODS-I
(Credits: 6, Theory: 4, Practical: 2)
Max. Marks: 100 (Theory: 70, Practical: 30)

UNIT-I
Ideas about types of data, collection and classification of data, tabulation of data. Frequency distributions: graphic and diagrammatic representation of data.

UNIT-II
Analysis of Quantitative Data: Concepts of central tendency, dispersion and relative dispersion; moments, skewness and kurtosis and their measures including those based on quartiles and moments.

UNIT-III
Bivariate Data: Scatter diagram, curve fitting by the method of least squares (linear and quadratic), fitting of curves reducible to polynomials by log and inverse transformation.

UNIT-IV
Correlation Coefficient: Product moment correlation coefficient and its properties, coefficient of determination, correlation ratio, rank correlation.

UNIT-V
Regression Analysis: Concept of regression, fitting of regression lines, regression coefficients and their properties.

BOOKS RECOMMENDED:

PRACTICAL: DSC-ST-A
1. Computation of mean, median, mode, geometric mean and harmonic mean.
3. Fitting of curves by least-squares method.
4. Computation of correlation coefficient, rank correlation coefficient.
5. Fitting of regression lines.
SEMESTER-II

DSC-ST-B: PROBABILITY AND PROBABILITY DISTRIBUTIONS

(Credits: 6, Theory: 4, Practical: 2)

Max. Marks: 100 (Theory: 70, Practical: 30)

UNIT-I
Random experiment: trials, sample point and samples space, events, operations of events, concepts of mutually exclusive and exhaustive events. Definition of Probability: Classical, relative frequency and axiomatic approach; discrete and continuous probability space, addition law of probability.

UNIT-II
Multiplication laws of probability, conditional probability and independence of events, Bayes theorem and its applications.

UNIT-III
Random variables; probability mass function, probability density function; distribution function, joint, marginal and conditional distributions.

UNIT-IV
Mathematical Expectation of a random variable and its properties, moment generating function, cumulant generating function and probability generating function.

UNIT-V
Discrete probability distributions: Uniform, Bernoulli, Binomial, Poisson. Continuous probability distributions: continuous uniform, Normal and Gamma.

PRACTICAL: DSC-ST-B

1. Fitting of binomial distribution.
2. Fitting of poisson distribution.
3. Computation of areas under normal probability curve.

BOOKS RECOMMENDED:

SEMESTER-III

DSC-ST-C: STATISTICAL METHODS-II & SAMPLING

(Credits: 6, Theory: 4, Practical: 2)

Max. Marks: 100 (Theory: 70, Practical: 30)
UNIT-I
Concept of population, sample, parameter, statistic and sampling distribution; standard error Tests of significance based on large samples (Z-test).

UNIT-II
Concepts of χ^2, t and F distributions and tests of significance based on χ^2, t and F distributions.

UNIT-III Analysis of categorical Data: Consistency of categorical data, independence and association of attributes.

UNIT-IV
Population and sample, sampling versus census, steps involved in sample surveys, principles of sample survey, random sampling versus non-random sampling, sampling and non-sampling errors.

UNIT-V

PRACTICAL: DSC-ST-C
1. Tests of significance based on large samples (Z-test).
2. Tests based on χ^2, t and F distributions.
3. Associations of attributes.
4. Estimation of mean and variance in SRS and stratified sampling.

BOOKS RECOMMENDED:

SEMESTER-III
DSC-ST-D:DESIGN AND ANALYSIS OF EXPERIMENT, OPERATIONS RESEARCH
(Credits: 6, Theory: 4, Practical: 2)
Max. Marks: 100 (Theory: 70, Practical: 30)

UNIT-I
Analysis of Variance: Introduction, one-way & two-way classifications (with one observation per cell) with fixed effect model and their analysis.
UNIT-II
Basic principles of experimental design: replication, randomization and local control Completely Randomized Design, Randomized Block Design.

UNIT-III
Introduction, definition, scope of Operations Research, Linear programming problems formulation, procedure of solving LPP by graphical method.

UNIT-IV
Definition of feasible solution, basic feasible solution, slack, surplus & artificial variables, simplex method, its algorithm & solution.

UNIT-V
Scheduling by PERT and CPM: Phases of project management, Difference between PERT and CPM, network construction, Computation of different times: EST, LST, Slack and Float time, Critical path.

PRACTICAL: DSC-ST-D

1. Analysis of variance in case of one-way and two-way(one observation per cell) classified data.
2. Completely randomized design, randomized block design, estimation of one missing value in RBD.
3. Solution of LPP by graphical method & simplex method.
4. Computation of trend values by graphic, semi-averages moving averages and least-squares method.

BOOKS RECOMMENDED:

DISCIPLINE SPECIFIC ELECTIVE
For DSE-(ST-A) and DSE-(ST-B), one has to choose any two (one for each semester) from the following three papers:

1. Time Series Analysis
2. Statistical Quality Control
3. Vital Statistics

DSE-ST: Time Series Analysis
Credits: 6, Theory: 4, Practical: 2)
Max. Marks: 100 (Theory: 70, Practical: 30)

UNIT-I
Time Series: Introduction to time series data and application in various fields, Components of time
series, Mathematical Models, Methods of measuring secular trend: graphic, semi-average, Moving average method.

UNIT-II
Measurement of trend by least squares method: by fitting Polynomials of 1st & 2nd Degree, exponential, modified exponential, logistic, Gompertz curve.

UNIT-III

UNIT-IV

UNIT-V
Different schemes which account for oscillations in a stationary time series. Auto regressive series of first and second order, Serial correlation and correlogram.

PRACTICAL
2. Problems on Spencers 15-point and 21-point formula.

BOOKS RECOMMENDED:
tributes: single sampling Plans.

UNIT-IV
Double sampling plans, Five different characteristic curves and their importance, sequential sampling inspection plans, comparison of three types of plans.

UNIT-V
Acceptance Sampling: comments on Dodge and Romigs schemes. Sampling inspection by variables: underlying principle, variables inspection with known standard deviation and variables inspection with unknown standard deviation.

PRACTICAL
1. Measurement of secular trend: Fitting of different types of curves by least square method.
4. Control charts for variables and attributes.
5. OC, ASN, ATI, LTPD, AOQL curves.

BOOKS RECOMMENDED:

DSE-ST: Vital Statistics
Credits: 6, Theory: 4, Practical: 2)
Max. Marks: 100 (Theory: 70, Practical: 30)

UNIT-I

UNIT-II
Population Census: Methods of census, salient features, its uses and problems, registration method, sample surveys, sources of demographic data.

UNIT-III
Measurement of mortality: Crude death rate, age-specific death rates, IMR, standardized death rate, Direct and indirect method of standardisation and uses.

UNIT-IV
Mortality table or Life table, its uses, columns of life table, assumptions, and construction of life table, Abridged life table (Reed Merell).
UNIT-V
Measurement of fertility: crude birth rate, general fertility rate, age-specific birth rate, total fertility rate, gross reproduction rate, net reproduction rate.

PRACTICAL

1. Calculation of different measures of mortality and fertility.
2. Construction of Life table.

BOOKS RECOMMENDED:
ZOOLOGY (HONOURS)

SEMESTER-I

C:1-DIVERSITY AND EVOLUTION OF NON-CHORDATA (PROTISTA TO PSEUDOCOELOMATES)
(Credits: 6, Theory-4, Practical-2)
Lectures: 60 (Theory:40, Practical:20)
Max. Marks: 100 (Theory:70, Practical:30)

UNIT-I: Kingdom Protista
General characteristics and classification up to classes; Life cycle, pathogenicity and prophylaxis of Plasmodium vivax, Trypanosoma gambiense and Entamoeba histolytica; Locomotion and reproduction in Protista.

UNIT-II: Phylum Porifera and Ctenophora
General characteristics and classification up to classes; Canal system in sponges; General characteristics and evolutionary significance; Evolution of Parazoa and Metazoa.

UNIT-III: Phylum Cnidaria
General characteristics and classification up to classes; Metagenesis in Obelia; Polymorphism in Cnidaria; Corals and coral reefs.

UNIT-IV: Phylum Platyhelminthes
General characteristics and classification up to classes; Life cycle, pathogenicity and prophylaxis of Fasciola hepatica and Taenia solium; Parasitic adaptations.

UNIT-V: Phylum Nemathelminthes
General characteristics and classification up to classes; Life cycle, pathogenicity and prophylaxis of Ascaris lumbricoides and Wuchereria Bancrofti; Parasitic adaptations.

Note: Classification to be followed from “Barnes RD (1982) Invertebrate Zoology; 5th Edition.”

PRACTICAL

Kingdom Protista
1. Morphology of Paramecium, Binary fission and Conjugation in Paramecium.
2. Life stages of Plasmodium vivax, Trypanosma gambiense and Entamoeba histolytica (Slides/Microphotographs).
3. Examination of pond water for protists.

Phylum Porifera
4. Study of Sycon (including T.S. and L.S.), Hyalonema, and Euplectella.
5. Temporary mounts of spicules, gemmules and sponging fibres.

Phylum Cnidaria

Phylum Ctenophora
7. Any one specimen/slide.

Phylum Platyhelminthes

8. Study of adult Fasciola hepatica, Taenia solium and their life stages (Slides/microphotographs).

Phylum Nemathelminthes

Note: Classification to be followed from “Barnes RD (1982) Invertebrate Zoology; 5th Edition.”

Recommended Books:

C:2-PERSPECTIVES IN ECOLOGY AND BIOSTATISTICS

(Credits:6, Theory-4, Practical-2)

Lectures: 60 (Theory:40, Practical:20)

Max. Marks:100 (Theory:70, Practical:30)

UNIT-I: Introduction to Ecology and Ecosystem

Relevance of studying ecology; History of ecology; Laws of limiting factors; Detailed study of temperature and light as physical factors; Types of ecosystem; Food chain, Detritus and grazing food chains; Food web; Energy flow through the ecosystem; Ecological pyramids.

UNIT-II: Population

Unitary and modular populations; Unique and group attributes of population: Density, natality, mortality, life tables, fecundity tables, survivorship curves, age ratio, sex ratio, dispersal and dispersion; Exponential and logistic growth, equation and patterns, r and K strategies, Population regulation-density-dependent and independent factors; Population interactions, Gause’s Principle with laboratory and field examples; Lotka-Volterra equation for competition and Predation, functional and numerical responses.

UNIT-III: Community

Community characteristics: dominance, diversity, species richness, abundance, stratification; Eco-tone and edge effect; Ecosystem development (succession) with example and Theories pertaining to climax community; Nutrient and biogeochemical cycle, Nitrogen cycle and Sulphur cycle.

UNIT-IV: Conservation of Biodiversity

Types of biodiversity, its significance, loss of biodiversity; Conservation strategies (in situ and ex situ); Endangered species concept; Role of ZSI, WWF, IUCN; Wildlife (Protection) Act, 1972.

UNIT-V: Biostatistics

Concept, definition and scope of biostatistics, biological data, sampling techniques, measures of central tendency (mean, median and mode), measures of dispersion, hypothesis and testing of hypothesis.
(chi square test, t test and Z test), correlation and regression analysis; Data analysis using EXCEL programme.

PRACTICAL

1. Study of life tables and plotting of survivorship curves of different types from the hypothetical/real data provided.
2. Determination of population density in a natural/hypothetical community by quadrate method and calculation of Shannon-Weiner diversity index for the same community.
5. Determination of mean, median, mode and standard deviation of biological data.

Recommended Books
8. Chainy, GBN, Mishra G and Mohanty PK. Basic Biostatistics, Kalyani Publisher.

C:3-DIVERSITY AND EVOLUTION OF NON-CHORDATA (COELOMATE NONCHORDATES)

(Credits:6, Theory-4, Practical-2)
Lectures: 60 (Theory:40, Practical:20)
Max. Marks:100 (Theory:70, Practical:30)

UNIT-I: Phylum Annelida
General characteristics and classification up to classes; Evolution of Coelom; Metamerism and Excretion in Annelida.

UNIT-II: Phylum Arthropoda
General characteristics and classification up to classes; Vision in Arthropoda; Respiration in Arthropoda; Moulting in insects, Metamorphosis in insects; Social life in insects (bees and termites) and Larval forms in Crustacea.

UNIT-III: Phylum Onychophora
General characteristics and evolutionary significance and affinities of Peripatatus.

UNIT-IV: Phylum Mollusca
General characteristics and classification up to classes; Respiration in Mollusca; Torsion and de torsion in Gastropoda; Pearl formation in bivalves and Evolutionary significance of trochophore larva.
UNIT-V: Phylum Echinodermata
General characteristics and classification up to classes; Water-vascular system in Asteroidea; Larval forms in Echinodermata and Evolutionary significance (Affinities with Chordates).

PRACTICAL

Phylum Annelida
1. Study of Aphrodite, Nereis, Sabella, Terebella, Serpula, Chaetopterus, Pheretima and Hirudinaria.
2. T.S. through pharynx, gizzard, and typhlosolar intestine of earthworm.
3. T.S. through crop of leech.

Phylum Arthropoda
4. Study of Limulus, Palamnaeus, Palaemon, Daphnia, Balanus, Sacculina, Cancer, Eupagurus, Scolopendra, Julius, termite, louse, honeybee, silk moth, wasp and dragon fly. Phylum Onychophora
5. Any one specimen/slide.

Phylum Mollusca
6. Study of Chiton, Dentalium, Pila, Doris, Helix, Unio, Ostrea, Mytilus, Loligo, Sepia, Octopus and Nautilus and Cypraea(cowrie).

Phylum Echinodermata
7. Study of echinoderm larvae.
8. Study of Pentaceros, Asterias, Ophiura, Clypeaster, Echinus, Echinocardium, Cucumaria and Antedon.

Recommended books

C:4-PHYSIOLOGY: LIFE SUSTAINING SYSTEMS

(Credits:6, Theory-4, Practical-2)
Lectures: 60 (Theory:40, Practical:20)
Max. Marks:100 (Theory:70, Practical:30)
UNIT-I: Digestive System
Structural organization, histology and functions of gastrointestinal tract and its associated glands; Mechanical and chemical digestion of food; Absorptions of carbohydrates, lipids, proteins, water, minerals and vitamins; Role of gastrointestinal hormones on the secretion and control of enzymes of gastrointestinal tract.

UNIT-II: Respiratory System
Histology of trachea and lung; Mechanism of respiration, Pulmonary ventilation; Respiratory volume and capacity; Transport of oxygen in the blood; Oxygen– hemoglobin and myoglobin, dissociation curve and the factors influencing it; Carbon monoxide poisoning; Carbon dioxide transport in the blood; buffering action of blood and haemoglobin and Control of respiration.

UNIT-III: Excretory System
Structure of kidney and its histological details; Renal blood supply; Mechanism of urine formation and its regulation and Regulation of acid-base balance.

UNIT-IV: Blood
Components of blood and their functions; Structure and functions of hemoglobin; Haemopoiesis; Haemostasis, Coagulation of blood and Disorders of blood.

UNIT-V: Heart
Structure of heart; Coronary circulation; Structure of conducting and working of myocardial fibers; Origin and conduction of cardiac impulses functions of AV node; Cardiac cycle; Cardiac output and its regulation-Frank-Starling Law of the heart; Nervous and chemical regulation of heart rate; Blood pressure and its regulation and Electrocardiogram.

PRACTICAL
1. Enumeration of red blood cells using haemocytometer.
2. Estimation of haemoglobin using Sahli’s haemoglobinometer.
3. Preparation of haemin and haemochromogen crystals.
4. Recording of blood pressure using a Sphygmomanometer.
5. Examination of sections of mammalian oesophagus, stomach, duodenum, ileum, rectum liver, trachea, lung and kidney.

Recommended Books

C:5-DIVERSITY AND DISTRIBUTION OF CHORDATA
(Credits:6, Theory-4, Practical-2)
Lectures: 60 (Theory:40, Practical:20)
Max. Marks:100 (Theory:70, Practical:30)
UNIT-I: Protochordata and Origin of Chordates
General characters of Hemichordata, Urochordata and Cephalochordata; Study of larval forms in protochordates; Retrogressive metamorphosis in Urochordata; Dipleurula concept and the Echinoderm theory of origin of chordates.

UNIT-II: Introduction to Vertebrata and Agnatha
Advanced features of vertebrates over Protochordata; General characters and classification of cyclostomes up to class; Structural peculiarities and affinities of Petromyzon and Myxine.

UNIT-III: Pisces and Amphibia
General characters of Chondrichthyes and Osteichthyes and classification up to order; Migration; Osmoregulation and Parental care in fishes; Scales in fishes; Origin of Tetrapoda (Evolution of terrestrial ectotherms); General characters and classification up to order and Parental care in Amphibians.

UNIT-IV: Reptilia and Aves
General characters and classification up to order; Skull in Reptilia; Affinities of Sphenodon; Poison apparatus and Biting mechanism in snakes; General characters and classification up to order; Principles and aerodynamics of flight, Flight adaptations; Archaeopteryx- a connecting link and Migration in birds.

UNIT-V: Mammals and Zoogeography
General characters and classification up to order; Affinities of Prototheria and Metatheria; Dentition in mammals; Adaptive radiation with reference to locomotory appendages; Zoogeographical realms; Theories pertaining to distribution of animals and Distribution of vertebrates in different realms.

PRACTICAL

Protochordata
2. Sections of Balanoglossus through proboscis and branchiogenital regions.
3. Sections of Amphioxus through pharyngeal, intestinal and caudal regions.
4. Permanent slide of spicules of Herdmania.

Agnatha
5. Petromyzon and Myxine.

Fishes

Amphibia

Reptiles

Aves
10. Study of six common birds from different orders.
11. Types of beaks and claws.
12. Types of feathers.

Mammalia
UNIT-I: Tissues and Glands, Bone and cartilage
Structure, location, function and classification of Epithelial tissue, Connective tissue, Muscular tissue, Nervous tissue; Types of glands and their functions; Structure and types of bones and cartilages; Ossification, bone growth and resorption.
UNIT-II: Nervous System
Structure of neuron, resting membrane potential; Origin of action potential and its propagation across the myelinated and unmyelinated nerve fibers; types of synapsis, Synaptic transmission; Neuromuscular junction; Reflex action and its types, Reflex arc and Physiology of hearing and vision.
UNIT-III: Muscle
Histology of different types of muscle; Ultra structure of skeletal muscle; Molecular and chemical basis of muscle contraction; Characteristics of muscle twitch; Motor Unit, summation and tetanus.
UNIT-IV: Reproductive System
Histology of male and female reproductive systems; Puberty; Physiology of reproduction of male and female; Methods of contraception (depicted through flow chart).
UNIT-V: Endocrine System
Functional Histology of endocrine glands - pineal, pituitary, thyroid, parathyroid, thymus, pancreas, adrenals; Hormones secreted by them and their mechanism of action; Gonadal hormones; Classification of hormones; Regulation of their secretion; Mode of hormone action; Signal transduction pathways utilized by steroidal and non-steroidal hormones; Hypothalamus (neuroendocrine gland), principal nuclei involved in neuroendocrine control of anterior pituitary and endocrine system and Placental hormones.

PRACTICAL
1. Demonstration of the unconditioned reflex action (Deep tendon reflex such as knee jerk reflex).
2. Preparation of temporary mounts: Squamous epithelium, Striated muscle fibres and nerve cells.
3. Examination of sections of mammalian skin, Cartilage, Bone, Spinal cord, Nerve cell, Pituitary, Pancreas, Testis, Ovary, Adrenal, Thyroid and Parathyroid.

Recommended Books

C:7-COMPARATIVE ANATOMY OF VERTEBRATES
(Credits:6, Theory-4, Practical-2)
Lectures: 60 (Theory:40, Practical:20)
Max. Marks:100 (Theory:70, Practical:30)

UNIT-I: Integumentary System and Skeletal System
Structure, functions and derivatives of integument; Axial and appendicular skeletons; Jaw suspensorium in vertebrates.

UNIT-II: Digestive and Respiratory System
Alimentary canal and associated glands; Skin, gills, lungs and air sacs and Accessory respiratory organs in fishes.

UNIT-III: Circulatory System
General plan of circulation; Evolution of heart and aortic arches.

UNIT-IV: Urinogenital System
Succession of kidney; Evolution of urinogenital ducts and Types of mammalian uteri.

UNIT-V: Nervous System and Sense Organs
Comparative account of brain; Autonomic nervous system; Spinal Nerves; Spinal cord; Cranial nerves in Mammals; Classification of receptors; visual receptors, chemoreceptors and mechanoreceptors.

PRACTICAL
1. Study of placoid, cycloid and ctenoid scales through permanent slides/photographs.
2. Disarticulated skeleton of Frog, Varanus, Fowl and Rabbit.
3. Carapace and plastron of turtle or tortoise.
4. Mammalian skulls (One herbivorous and one carnivorous animal).

Recommended Books

C:8-BIOCHEMISTRY OF METABOLIC PROCESSES
(Credits:6, Theory-4, Practical-2)
Lectures: 60 (Theory:40, Practical:20)
Max. Marks:100 (Theory:70, Practical:30)
UNIT-I: Biomolecules
Structures and properties of important mono-, di- and polysaccharides; Fatty acids, triglycerides and steroids; and amino acids and proteins.

UNIT-II: Carbohydrate Metabolism
Glycolysis; Citric acid cycle; pentose phosphate pathway; Gluconeogenesis; Shuttle systems (Malate-aspartate shuttle, Glycerol 3-phosphate shuttle); Glycogenolysis; Glycogenesis.

UNIT-III: Lipid Metabolism
β-oxidation of saturated fatty acids with even and odd number of carbon atoms; Biosynthesis of palmitic acid and Ketogenesis and its regulation.

UNIT-IV: Protein Metabolism
Catabolism of amino acids: Transamination, Deamination; Urea cycle; Fate of C-skeleton of Gluconic and Ketogenic amino acids.

UNIT-V: Enzymes and Oxidative Phosphorylation
Kinetics and Mechanism of action of enzymes; Inhibition of enzyme action; Allosteric enzymes; Oxidative phosphorylation in mitochondria; Respiratory chain, ATP synthase, Inhibitors and Uncouplers.

PRACTICAL
1. Identification of unknown carbohydrates in given solutions (Starch, Sucrose, Lactose, Galactose, Glucose, Fructose).
2. Colour tests of functional groups in protein solutions.
3. Action of salivary amylase under optimum conditions.
5. Effect of temperature on the action of salivary amylase.

Recommended Books

C:9-CELL BIOLOGY
(Credits:6, Theory-4, Practical-2)
Lectures: 60 (Theory:40, Practical:20)
Max. Marks:100 (Theory:70, Practical:30)

UNIT-I: Cells and Plasma Membrane
Prokaryotic and Eukaryotic cells; Mycoplasma; Virus, Viroids, Virions and Prions; Various models
of plasma membrane; Transport across membranes; Cell junctions: Occluding junctions (Tight
junctions), Anchoring junctions (desmosomes), Communicating junctions (gap junctions) and Plas-
modesmata.

UNIT-II: Endomembrane System, Mitochondria and Peroxisomes
The Endoplasmic Reticulum; Golgi apparatus; Mechanism of vesicular transport; Lysosomes; Struc-
ture and function of mitochondria: Chemi-osmotic hypothesis; Semiautonomous nature of mito-
chondria; Endosymbiotic hypothesis and Peroxisomes.

UNIT-III: Cytoskeleton and Nucleus
Structure and functions of intermediate filament, microtubules and microfilaments; Ultra structure
of nucleus; Nuclear envelope: Structure of nuclear pore complex; Chromosomal DNA and its pack-
aging; Structure and function of Nucleolus.

UNIT-IV: Cell Cycle and Cell Signaling
Cell cycle, Regulation of cell cycle; Signaling molecules and their receptors.

UNIT-V: Apoptosis and Cancer
Extrinsic (Death Receptor) Pathway and Intrinsic (Mitochondrial) Pathway; Growth and develop-
ment of tumors and Metastasis.

PRACTICAL

1. Gram’s staining technique for visualization of prokaryotic cells.
2. Study various stages of mitosis from permanent slides.
3. Study various stages of meiosis from permanent slides.
4. Study the presence of Barr body in human female blood cells/cheek cells. (Preparation of per-
manent slides).
5. Cytochemical demonstration (Preparation of permanent slides).
 (i) DNA by Feulgen reaction.
 (ii) Mucopolysaccharides by PAS reaction.
 (iii) Proteins by Mercurobromophenol blue.
 (iv) DNA and RNA by Methyl Green Pyronin.
 (In practical examination, 05 marks should be of permanent slide submission; one
mark each for DNA, PAS, Proteins, MGP and Barr body slide.)

Recommended Books
 Pearson Benjamin Cummings Publishing, San Francisco.
 Washington D.C.
cott Williams and Wilkins, Philadelphia.
 and Sons. Inc., USA.

C:10-PRINCIPLES OF GENETICS
UNIT-I: Mendelian Genetics and its Extension
Principles of inheritance; Incomplete dominance and co-dominance; Multiple alleles, Lethal alleles; Epistasis; Pleiotropy; Sex-linked inheritance.

UNIT-II: Linkage, Crossing Over and Chromosomal Mapping
Linkage and crossing over; Cytological basis of crossing over; Molecular mechanisms of crossing over; Recombination frequency as a measure of linkage intensity; Two factor and three factor crosses; Interference and coincidence and Somatic cell hybridization.

UNIT-III: Mutations
Gene mutations; Chromosomal mutations: Deletion, duplication, inversion, translocation; Aneu-ploidy and polyploidy; Induced versus spontaneous mutations; Backward and forward mutations; Suppressor mutations; Molecular basis of mutations in relation to UV light and chemical mutagens; Detection of mutations: CLB method, attached X method and DNA repair mechanisms.

UNIT-IV: Sex Determination and Quantitative Genetics
Chromosomal mechanisms of sex determination; Sex-linked, sex-influenced and sex limited characters; Polygenic inheritance and Transgressive variation.

UNIT-V: Extra-chromosomal Inheritance
Criteria for extra-chromosomal inheritance; Antibiotic resistance in Chlamydomonas; Mitochondrial mutations and Maternal effects.

PRACICAL

1. To study the Mendelian laws and gene interactions and their verification by Chi square analyses using seeds/beads/Drosophila.
2. Identification of various mutants of Drosophila.
3. To calculate allelic frequencies by Hardy-Weinberg Law.
4. Linkage maps based on data from crosses of Drosophila.
5. Study of human karyotype (normal and abnormal).
6. Pedigree analysis of some human inherited traits.
7. Preparation of polytene chromosomes from larva of Chironomous/Drosophila.
8. To study mutagenicity in Salmonella/E. coli by Ames test.

Recommended Books
C:11-DEVELOPMENTAL BIOLOGY
(Credits:6, Theory-4, Practical-2)
Lectures: 60 (Theory:40, Practical:20)
Max. Marks:100 (Theory:70, Practical:30)

UNIT-I: Introduction
History and basic concepts: Epigenesis, preformation, Mosaic and regulative development; Discovery of induction; Cell-Cell interaction; Pattern formation; Differentiation and growth; Differential gene expression; Cytoplasmic determinants and asymmetric cell division.

UNIT-II: Early Embryonic Development
Gametogenesis (Spermatogenesis, Oogenesis); Types of eggs; Egg membranes; Fertilization: Changes in gametes, monospermy and polyspermy; Planes and patterns of cleavage; Early development of frog and chick up to gastrulation; Fate maps; Embryonic induction and organizers.

UNIT-III: Late Embryonic Development
Fate of germ layers; Extra-embryonic membranes in birds; Implantation of embryo in humans and Placenta (Structure, types and functions of placenta).

UNIT-IV: Post Embryonic Development
Metamorphosis: Changes, hormonal regulations in amphibians; Regeneration: Modes of regeneration (epimorphosis, morphallaxis and compensatory regeneration); Ageing: Concepts and models.

UNIT-V: Implications of Developmental Biology
Teratogenesis: Teratogenic agents and their effects on embryonic development; in vitro Fertilization; Stem cell culture and Amniocentesis.

PRACTICAL
1. Study of whole mounts and sections of developmental stages of frog through permanent slides: Cleavage stages, blastula, gastrula, neurula, tail-bud stage, tadpole (external and internal gill stages).
2. Study of whole mounts of developmental stages of chick through permanent slides:Primitive streak (13 and 18 hours), 21, 24, 28, 33, 36, 48, 72, and 96 hours of incubation(Hamilton and Hamburger stages).
3. Study of developmental stages (above mentioned) by raising chick embryo in the laboratory.
5. Study of different types of placenta.
6. Project report on Drosophila culture/chick embryo development.

Recommended Books

C:12-MOLECULAR BIOLOGY
(Credits:6, Theory-4, Practical-2)
Lectures: 60 (Theory:40, Practical:20)
UNIT-I: Nucleic Acids and DNA Replication
Salient features of DNA double helix; Watson and Crick model of DNA; DNA denaturation and renaturation; DNA topology - linking number and DNA topoisomerases; Cot curves; Structure of RNA, tRNA and DNA and RNA associated proteins; DNA Replication in prokaryotes and eukaryotes; Mechanism of DNA replication; Role of proteins and enzymes in replication; Licensing factors; Semiconservative, bidirectional and semi-discontinuous replication; RNA priming; Replication of circular and linear ds-DNA and replication of telomeres.
UNIT-II: Transcription
RNA polymerase and transcription Unit; Mechanism of transcription in prokaryotes and Eukaryotes; Synthesis of rRNA and mRNA; Transcription factors and regulation of transcription.

UNIT-III: Translation
Genetic code, Degeneracy of the genetic code and Wobble Hypothesis; Process of protein synthesis in prokaryotes: Ribosome structure and assembly in prokaryotes, fidelity of protein synthesis, aminoacyl tRNA synthetases and charging of tRNA; Proteins involved in initiation, elongation and termination of polypeptide chain; Inhibitors of protein synthesis; Difference between prokaryotic and eukaryotic translation.

UNIT-IV: Post Transcriptional Modifications and Processing of Eukaryotic RNA
Structure of globin mRNA; Split genes: concept of introns and exons, splicing mechanism, alternative splicing, exon shuffling, and RNA editing.

UNIT-V: Gene Regulation and Regulatory RNAs
Transcription regulation in prokaryotes: Principles of transcriptional regulation with examples from lac operon and trp operon; Transcription regulation in eukaryotes: Activators, repressors, enhancers, silencers elements; Gene silencing, Genetic imprinting; Ribo-switches, RNA interference, miRNA and siRNA.

PRACTICAL
1. Study of DNA replication using Photographs or slides and special cases, e.g., Polyteny using permanent slides of polytene chromosomes.
2. Preparation of liquid culture medium (LB) and raise culture of E. coli.
3. Estimation of the growth kinetics of E. coli by turbidity method.
4. Preparation of solid culture medium (LB) and growth of E. coli by spreading and streaking.
5. Demonstration of antibiotic sensitivity/resistance of E. coli to antibiotic pressure and interpretation of results.
6. Quantitative estimation of salmon sperm/calf thymus DNA using colorimeter (Diphenylamine reagent) or spectrophotometer (A260 measurement).

Recommended Books
UNIT-I: Immune System and Immunity
Historical perspective of Immunology, Early theories of Immunology, Haematopoiesis, Cells and organs of the Immune system; Anatomical barriers, Inflammation, Cell and molecules involved in innate immunity, Adaptive immunity (Cell mediated and humoral), Passive: Artificial and natural Immunity, Active: Artificial and natural Immunity and Immune dysfunctions.

UNIT-II: Antigens
Antigenicity and immunogenicity, Immunogens, Adjuvants and haptens, Factors influencing immunogenicity, B and T -Cell epitopes.

UNIT-III: Immunoglobulins
Structure and functions of different classes of immunoglobulins, Antigen-antibody interactions, Immunoassays, Polyclonal sera, Monoclonal antibodies and Hybridoma technology.

UNIT-IV: Major Histocompatibility Complex and Complement System
Structure and functions of endogenous and exogenous pathway of antigen presentation; Components and pathways of complement activation.

UNIT-V: Cytokines, Hypersensitivity and Vaccines
Properties and functions of cytokines; Cytokine-based therapies; Gell and Coombs classification and Brief description of various types of hypersensitivities; Types of vaccines: Recombinant vaccines and DNA vaccines.

PRACTICAL
1. Demonstration of lymphoid organs.
2. Ouchterlonys double immuno-diffusion method.
3. Determination of ABO blood group.
4. Preparation of single cell suspension of splenocytes from chick spleen, cell counting and viability test.
5. ELISA/ dot Elisa (using kit).
6. Principles, experimental set up and applications of immuno-electrophoresis, RIA, F.

Recommended Books
UNIT-I: History of Life, theories of Evolution and Extinction
Chemogeny, Biogeny, RNA World, Major Events in History of Life; Lamarckism; Darwinism; Neo-Darwinism; Background of extinction, Mass extinction (Causes, Names of five major extinctions, K-T extinction in detail) and Role of extinction in evolution.

UNIT-II: Evidences of Evolution
Fossils and its types; Dating of fossils, Phylogeny of horse and human; Molecular evidences (Globin gene families as an example) and Molecular clock concept.

UNIT-III: Processes of Evolutionary Change
Organic variations; Isolating mechanisms; Natural selection (Industrial melanism, Pesticide/Antibiotic resistance); Types of natural selection (Directional, Stabilizing, Disruptive), Sexual Selection and Artificial selection.

UNIT-IV: Principles of population genetics
Concept of gene pool, Gene frequencies equilibrium frequency (Hardy-Weinberg equilibrium), Shift in gene frequency without selection Genetic drift, Mutation pressure and Gene flow and Shifts in gene frequencies with selection.

UNIT-V: Species Concept and Evolution above species level
Biological concept of species (Advantages and Limitations); Sibling species, Polymorphic species, Polytypic species, Ring species; Modes of speciation (Allopatric, Sympatric); Macro-evolutionary Principles (Darwins Finches); Convergence, Divergence and Parallelism.

PRACTICAL
1. Study of fossil evidences from plaster cast models and pictures.
2. Study of homology and analogy from suitable specimens/ pictures.
3. Demonstration of changing allele frequencies with and without selection.
4. Construction of cladogram based on morphological characteristics.
5. Construction of phylogenetic tree with bioinformatics tools (Clustal X and Phylip).
6. Interpretation of phylogenetic trees.

Recommended Books
DISCIPLINE SPECIFIC ELECTIVE

DSE:1-ANIMAL BEHAVIOUR
(Credits:6, Theory-4, Practical-2)
Lectures: 60 (Theory:40, Practical:20)
Max. Marks:100 (Theory:70, Practical:30)

UNIT-I: Introduction and Mechanisms of Behaviour
Origin and history of Ethology; Brief profiles of Karl von Frisch, Ivan Pavlov, Konrad Lorenz, Niko Tinbergen; Proximate and ultimate behavior; Objective of behaviour, Behaviour as a basis of evolution; Behaviour as a discipline of science; Innate behaviour, Instinct, Stimulus filtering, Sign stimuli and Code breakers.

UNIT-II: Patterns of Behaviour
Reflexes: Types of reflexes, reflex path, characteristics of reflexes (latency, after discharge, summation, fatigue, inhibition) and its comparison with complex behavior.
Orientation: Primary and secondary orientation; kinesis-orthokinesis, klinokinesis; taxistropotaxis and klinotaxis and menotaxis (light compass orientation) and mnemotaxis.
Learning: Associative learning, classical and operant conditioning, Habituation and Imprinting.

UNIT-III: Social Behaviour
Insects society; Honey bee: Society organization, polyethism, foraging, round dance, waggle dance, Experiments to prove distance and direction component of dance, learning ability in honey bee, formation of new hive/queen; Reciprocal altruism, Hamiltons rule and inclusive fitness with suitable examples.

UNIT-IV: Sexual Behaviour
Asymmetry of sex, Sexual dimorphism, Mate choice, Intra-sexual selection (male rivalry),Inter-sexual selection (female choice), Infanticide, Consequences of mate choice for female fitness, Sexual conflict for male versus female parental care and Courtship behaviour in three spine stickleback.

UNIT-V: Biological Clocks
Circadian rhythm, Tidal rhythm, Lunar rhythm, Advantages of biological clocks, Jet lag and Entrainment.

PRACTICAL
1. To study different types of animal behaviour such as habituation, social life, courtship behaviour in insects, and parental care from short videos/movies and prepare a short report.
2. To study nests and nesting habits of the birds and social insects.
3. To study the behavioural responses of wood lice to dry condition.
4. To study behavioural responses of wood lice in response to humid condition.
5. To study geotaxis behaviour in earthworm.
6. To study the phototaxis behaviour in insect larvae.
7. Visit to Forest/ Wild life Sanctuary/Biodiversity Park/Zoological Park to study behavioural activities of animals and prepare a short report.

Recommended Books
UNIT-I: Bee-keeping and Bee Economy (Apiculture)
Varieties of honey bees and Bee pasturage; Setting up an apiary: Langstroths/Newton’s hive, bee veil, brood and storage chambers, iron frames and comb sheets, drone excluder, rearing equipments, handling of bees, artificial diet; Diseases of honey bee, American and European Foulbrood, and their management; Honey extraction techniques; Physicochemical analysis of honey; Other beneficial products from bee; Visit to an apiculture institute and honey processing Units.

UNIT-II: Silk and Silk Production (Sericulture)
Different types of silk and silkworms in India; Rearing of Bombyx mori, Rearing racks and trays, disinfectants, rearing appliances, black boxing, Chawki rearing, bed cleaning, mountages, harvesting of cocoons; Silkworm diseases: Pebrine, Flacherie, Grasserie, Muscardine and Aspergillosis, and their management; Silkworm pests and parasites: Uzi fly, Dermestid beetles and their management; Silk reeling techniques and Quality assessment of silk fibre.

UNIT-III: Aquaculture I
Brood stock management; Induced breeding of fish; Management of hatchery of fish; Management of nursery, rearing and stocking ponds; Preparation and maintenance of fish aquarium; Preparation of compound diets for fish; Role of water quality in aquaculture; Fish diseases: Bacterial, viral and parasitic; Preservation and processing of harvested fish; Fishery by-products.

UNIT-IV: Aquaculture II
Prawn farming; Culture of crab; Pearl culture and Culture of air breathing fishes.

UNIT-V: Dairy and Poultry Farming
Introduction; Indigenous and exotic breeds; Rearing, housing, feed and rationing; Commercial importance of dairy and poultry farming; Varietal improvement techniques; Diseases and their management; Dairy or poultry farm management and business plan; Visit to any dairy farm or Poultry farm.
* Submission of report on anyone field visits mentioned above.

PRACTICAL
1. Study of different types of bees (Queens, Drones and Worker bees).
2. Study of different types of silk moths.
3. Study of different types of pearls.
4. Study of different types of fish diseases.
5. Identification of different types of scales in fishes.
6. Study of different types of fins.
7. Study of different modified structures of fishes (Saw of sawfish, Hammer of hammer head fish, tail of sharks etc.)
8. Identification of various types of natural silks.

Recommended Books

DSE:3-MICROBIOLOGY
(Credits:6, Theory-4, Practical-2)
Lectures: 60 (Theory:40, Practical:20)
Max. Marks:100 (Theory:70, Practical:30)

UNIT-I:
History of Microbiology; Microbial World Characterization, Classification and identification of microbes.

UNIT-II:
Prokaryotes: General morphology and classification of bacteria, their characters and economic importance; Gram-positive and Gram-negative bacteria.

UNIT-III:
Eukaryotes: General morphology of Protista and Fungi classification and economic importance.

UNIT-IV:
Viruses: structure, genome, replication cycle; Epidemiology of infectious diseases with reference of human hosts Bacterial (Tuberculosis), Viral (Hepatitis), Protozoan (Amoebiasis) and Fungal (any one) disease.

UNIT-V:
Microbe interactions-Immune Responses-Antibiotics and other chemotherapeutic agents; Applied microbiology in the fields of food, agriculture, industry and environment.

PRATICAL

3. Pure culture techniques: Streak plate, pour plate and decimal dilution.
4. Cultural characteristics of microorganisms: Growth on different media, growth characteristics and description and demonstration of pigment production.
5. Staining techniques: Smear preparation, simple staining, Grams staining, Acidfast staining and
staining for meta chromatic granules.
8. Physiology characteristics: IMViC test, H2S, Oxidase, catalase, urease test, Carbohydrate fermentation, Maintenance of pure culture, Paraffin method, Stab culture and maintenance of mold culture.

Recommended Books

DSE:4-PROJECT WORK
(Credits:6, Max. Marks:100)
SKILL ENHANCEMENT COURSES (SEC)

SEC: 1 - COMMUNICATIVE ENGLISH & ENGLISH WRITING SKILL
 (Compulsory)
 (Credits: 02) Theory: 20 Classes (1hr duration)

SEC: 2 - PUBLIC HEALTH AND HYGIENE
 (Credits: 2)
 Lectures: 30, Max. Marks: 50

UNIT-I:
Scope of Public health and Hygiene; nutrition and health; classification of foods; Nutritional deficiencies; Vitamin deficiencies.

UNIT-II:
Pollution: water pollution, air pollution, soil pollution, noise pollution, thermal pollution and radioactive pollution.

UNIT-III:
Environment and Health hazards; Environmental degradation and health hazards due to pollutants.

UNIT-IV:
Communicable diseases and their control measures such as Measles, Polio, Chikungunya, Rabies, Plague, Leprosy and AIDS.

UNIT-V:
Non-Communicable diseases and their preventive measures such as Hypertension, Coronary Heart diseases, Stroke, Diabetes, Obesity and Mental ill-health.

Recommended Books
GENERIC ELECTIVE PAPERS (GE)
Credits: 06 each

GE-1: ANIMAL DIVERSITY (NON-CHORDATE), PHYSIOLOGY AND ENDOCRINOLOGY
(Credits:6, Theory-4, Practical-2)
Lectures: 60 (Theory:40, Practical:20)
Max. Marks:100 (Theory:70, Practical:30)

General characteristics and classification up to classes and study of types mentioned
UNIT-I:
Protozoa: Paramecium with reference to structure and reproduction.
Porifera: Structure of Sycon and Canal system in sponges.
Cnidaria: Structure, reproduction and life cycle of Aurelia.
UNIT-II:
Platyhelminthes: Structure, reproduction and life cycle of Fasciola.
Nemat helminthes: Structure, reproduction and life cycle of Ascaris.
Annelida: Structure, digestion and excretion of Hirudinaria.
UNIT-III:
Arthropoda: External morphology, digestive and excretory system of Paleamon.
Mollusca: Morphology and respiration of Pila.
Echimodermata: Morphology and water vascular system of Asterias.
UNIT-IV: Mammalian Physiology
Digestion, Respiration, Transport of respiratory gases, Structure of heart and cardiac cycle, Composition and clotting of blood, Blood group, Structure of neuron and transmission of nerve impulse, Structure of skeletal muscle and muscle contraction.
UNIT-V: Endocrinology
Structure and function of Pituitary, Thyroid and Gonads.
Note: Classification to be followed from “Barnes RD (1982) Invertebrate Zoology. 5th Edition.”

PRACTICAL

Endocrinology slides as mentioned in syllabus Museum Specimens and slides Slides: Morphology of Paramecium, Binary fission and Conjugation in Paramecium. Section through Sycon, Spicules and Gemmules of sponge, Ephyra larva.

Recommended Books
GE-2: ANIMAL DIVERSITY (PROTOCHORDATA, CHORDATA),
DEVELOPMENTAL BIOLOGY AND IMMUNOLOGY
(Credits:6, Theory-4, Practical-2)
Lectures: 60 (Theory:40, Practical:20)
Max. Marks:100 (Theory:70, Practical:30)

UNIT-I: Protochordata and Origin of Chordates
General characters of Hemichordata, Urochordata and Cephalochordata; Structure, Digestive system, Respiratory and reproduction in Balanoglossus, Herdmania and Amphioxus.

UNIT-II: Pisces and Amphibia
General characters of Chondrichthyes and Osteichthyes and classification up to order; Digestive and reproductive system in Sciodon General characters and classification of amphibian up to order, Circulatory and Nervous system (Brain and Cranial nerves).

UNIT-III: Reptilia, Aves and Mammals
Urinogenital system of Calotes; Respiratory system of Pigeon and Flight adaptation in Birds; Digestive and Nervous System (Brain and Cranial nerves) of rabbit.

UNIT-IV: Developmental Biology
Gametogenesis, structure of gametes, Mechanism of fertilization, Types of Cleavage, Development of Amphioxus and frog up to formation of three germ layers.

UNIT-V: Immunology
Innate and acquired immunity, Antigens, structure and function of immunoglobulins, Antign- Antibody interaction, Vaccines.

PRACTICAL

Immunology: Blood Grouping
Slides: Sections through Balanoglossus and Amphioxus; Tissue sections through Liver, Pancreas; Embryological slides of frog.
Bones: Amphibia and mammals.
Recommended Books

GE-3: FOOD, NUTRITION AND HEALTH
(Credits: 6, Theory-4, Practical-2)
Lectures: 60 (Theory:40, Practical:20)
Max. Marks:100 (Theory:70, Practical:30)

UNIT-I:
Food; Diet; Nutrient; Vitamins; Disorders due to deficiency of vitamins; Synthetic foods and drinks.

UNIT-II:
Functions of food; Components of food; Nutrients (Macro and micronutrients): their biochemical role and dietary sources; Food groups and the concept of a balanced diet; Causes of food spoilage; Food adulteration; Nutrition through the life cycle- Physiological considerations, nutrient needs and dietary pattern for various groupsadults, pregnant and nursing mothers, infants, preschool and school children, adolescents and elderly.

UNIT-III:
Nutritional Biochemistry Carbohydrates, Lipids, Proteins - Definition, Classification, Structure and properties Significance of acid value, iodine value and saponification value of lipids; Essential and Non-essential amino acids; Enzymes- Definition, Classification, Properties; Coenzymes Vitamins- Fat-soluble and Water-soluble vitamins; their Structure and properties Minerals- Iron, calcium, phosphorus, iodine, selenium and zinc and their properties.

UNIT-IV:
Introduction to health- Definition and concept of health; Major nutritional deficiency Diseases: Protein Energy Malnutrition; Life style related diseases- hypertension, diabetes mellitus, and obesitytheir causes and prevention through dietary or lifestyle modifications. Social health problems- smoking, alcoholism, drug dependence and Acquired Immuno Deficiency Syndrome (AIDS); Common ailments- cold, cough, fevers, diarrhoea, constipation: their causes and dietary treatment.

UNIT-V:
Food hygiene, Potable water- sources and methods of purification, Food and Water Borne Infections.

PRACTICAL
1. To detect adulteration in a) Ghee b) Sugars c) Tea leaves and d) Turmeric.
2. To determine absorbed oil content in fried foods.
3. Estimation of lactose in milk.
4. Ascorbic acid estimation in food by titrimetry.
5. Estimation of calcium in foods by titrimetry.
6. Preparation of temporary mounts of various stored grain pests.
7. Project: Undertake computer aided diet analysis and nutrition counselling for different age groups.
 OR Identify nutrient rich sources of foods, their seasonal availability and price; study of Nutritionlabelling on selected foods.

Recommended Books

GE-4: BIOTECHNOLOGY: MICROBES TO ANIMALS
(Credits:6, Theory-4, Practical-2)
Lectures: 60 (Theory:40, Practical:20)
Max. Marks:100 (Theory:70, Practical:30)

UNIT-I: Introduction
Concept and scope of Biotechnology; Importance of biotechnology and Application of biotechnology.

UNIT-II: Techniques in Gene Manipulation
Restriction and modifying enzymes, Cloning vectors and Expression vectors, Transformation techni ques, Identification of recombinants, Construction and screening of DNA libraries; Molecular analysis of DNA, RNA and proteins (i.e., Southern, Northern and Western blotting), DNA sequencing (Sangers method and automation), Polymerase Chain Reaction, Microarrays, DNA fingerprinting and RAPD.

UNIT-III: Microbes in Biotechnology
Growth kinetics of microbes, Applications of microbes in industry (Concept of primary and secondary metabolites, Fermentation/Bioreactors, Downstream processing), Bioremediation and Biosensing.

UNIT-IV: Transgenic Animal
Production of transgenic animals: Retroviral method, DNA microinjection method, embryonic stem cell method, nuclear transplantation; Applications of transgenic animals; Knockout mice; Transgenic livestock and Transgenic fish.

UNIT-V: Biotechnology and Human Welfare
Animal cell technology: Concept of expressing cloned genes in mammalian cells, Recombinant DNA in health (Recombinant insulin and human growth hormone), Production of recombinant vaccines, Gene therapy: in vitro, in-vivo and ex-vivo. Ethical issues concerning: Transgenesis, Bio safety and
PRACTICAL

1. Isolation of genomic DNA from E. coli and analyze it using agarose gel electrophoresis.
2. Isolation of plasmid DNA (pUC 18/19) and analyze it using agarose gel electrophoresis.
3. Transformation of E. coli (pUC 18/19) and calculation of transformation efficiency.
4. Restriction digestion of lambda (λ) DNA using EcoR1 and Hind III.
5. DNA ligation (lambda DNA EcoR1/Hind III digested).
6. Construction of restriction digestion maps from data provided.
7. Study of Southern blot hybridization and PCR; Analysis of DNA fingerprinting (Dry Lab).
8. Project on Animal Cell Culture.

Recommended Books
ZOOLOGY(PASS)

SEMESTER-I

C:1-DIVERSITY AND EVOLUTION OF NON-CHORDATA (PROTISTA TO PSEUDOCOELOMATES)

(Credits:6, Theory-4, Practical-2)
Lectures: 60 (Theory:40, Practical:20)
Max. Marks:100 (Theory:70, Practical:30)

UNIT-I: Kingdom Protista
General characteristics and classification up to classes; Life cycle, pathogenicity and prophylaxis of Plasmodium vivax, Trypanosoma gambiense and Entamoeba histolytica; Locomotion and reproduction in Protista.

UNIT-II: Phylum Porifera
General characteristics and classification up to classes; Canal system in sponges.

UNIT-III: Phylum Cnidaria
General characteristics and classification up to classes; Metagenesis in Obelia; Polymorphism in Cnidaria; Corals and coral reefs.

UNIT-IV: Phylum Platyhelminthes
General characteristics and classification up to classes; Life cycle, pathogenicity and prophylaxis of Fasciola hepatica and Taenia solium; Parasitic adaptations.

UNIT-V: Phylum Nemathelminthes
General characteristics and classification up to classes; Life cycle, pathogenicity and prophylaxis of Ascaris lumbricoides and Wuchereria Bancrofti; Parasitic adaptations.

Note: Classification to be followed from “Barnes RD (1982) Invertebrate Zoology. 5th Edition.”

PRACTICAL

Kingdom Protista
1. Morphology of Paramecium, Binary fission and Conjugation in Paramecium.
2. Life stages of Plasmodium vivax, Trypanosma gambiense and Entamoeba histolytica (Slides/Microphotographs).
3. Examination of pond water for protists.

Phylum Porifera
4. Study of Sycon (including T.S. and L.S.), Hyalonema, and Euplectella.
5. Temporary mounts of spicules, gemmules and sponging fibres.

Phylum Cnidaria

Phylum Ctenophora
7. Any one specimen/slide. Phylum Platyhelminthes
8. Study of adult Fascioal hepatica and aematobium, Taenia solium and their life stages (Slides/microphotographs).

Phylum Nemathelminthes

Note: Classification to be followed from "Barnes RD (1982) Invertebrate Zoology. 5th Edition."

Recommended Books

C:2-PERSPECTIVES IN ECOLOGY
(Credits:6, Theory-4, Practical-2)
Lectures: 60 (Theory:40, Practical:20)
Max. Marks:100 (Theory:70, Practical:30)

UNIT-I: Introduction to Ecology
History of ecology; Autecology and synecology; Levels of organization; Laws of limiting factors; Detailed study of temperature and light as physical factors.

UNIT-II: Population
Unitary and modular populations; Unique and group attributes of population: Density, natality, mortality, life tables, fecundity tables, survivorship curves, age ratio, sex ratio, dispersal and dispersion; Exponential and logistic growth, equation and patterns, r and K strategies, Population regulation - density-dependent and independent factors.

UNIT-III: Community
Community characteristics: dominance, diversity, species richness, abundance, stratification; Ectone and edge effect; Ecosystem development (succession) with example.

UNIT-IV: Ecosystem
Types of ecosystem; Food chain, Detritus and grazing food chains, Linear and Y-shaped food chains; Food web; Energy flow through the ecosystem; Ecological pyramids and Ecological efficiencies; Nutrient and biogeochemical cycle, Nitrogen cycle.

UNIT-V: Conservation of Biodiversity
Types of biodiversity, its significance, loss of biodiversity; Conservation strategies (in situ and ex situ) and wildlife (Protection) act, 1972.

PRACTICAL
1. Study of life tables and plotting of survivorship curves of different types from the hypotheti-
cal/real data provided.

2. Determination of population density in a natural/hypothetical community by quadrate method and calculation of Shannon-Weiner diversity index for the same community.

Recommended Books

C:3-DIVERSITY AND EVOLUTION OF NON-CHORDATA (COELOMATE NONCHORDATES)

(Credits:6, Theory-4, Practical-2)
Lectures: 60 (Theory:40, Practical:20)
Max. Marks:100 (Theory:70, Practical:30)

UNIT-I: Phylum Annelida
General characteristics and classification up to classes; Metamerism and Excretion in Annelida.

UNIT-II: Phylum Arthropoda
General characteristics and classification up to classes; Vision in Arthropoda; Respiration in Arthropoda; Moulting in insects, Metamorphosis in insects; Social life in insects (bees and termites) and Larval forms in Crustacea.

UNIT-III: Phylum Onychophora
General characteristics, evolutionary significance and affinities of Peripatus.

UNIT-IV: Phylum Mollusca
General characteristics and classification up to classes; Respiration in Mollusca; Torsion and detorsion in Gastropoda; Pearl formation in bivalves.

UNIT-V: Phylum Echinodermata General characteristics and classification up to classes; Water-vascular system in Asteroidea; Larval forms in Echinodermata.

PRACTICAL

Phylum Annelida
1. Study of Aphrodite, Nereis, Heteronereis, Sabella, Terebella, Serpula, Chaetopterus, Pheretima and Hirudinaria.
2. T.S. through pharynx, gizzard, and typhlosolar intestine of earthworm.
3. T.S. through crop of leech.
Phylum Arthropoda
4. Study of Limulus, Palamnaeus, Palaemon, Daphnia, Balanus, Sacculina, Cancer, Eupagurus, Scolopendra, Julus, termite, louse, honeybee, silk moth, wasp and dragon fly.

Phylum Onychophora
5. Any one specimen/slide.

Phylum Mollusca
6. Study of Chiton, Dentalium, Pila, Doris, Helix, Unio, Ostrea, Mytilus, Loligo, Sepia, Octopus and Nautilus and Cyprea (cowrie).

Phylum Echinodermata
7. Study of echinoderm larvae.
8. Study of Pentaceros, Asterias, Ophiura, Clypeaster, Echinus, Echinocardium, Cucumaria and Antedon.

Recommended Book

C:4-PHYSIOLOGY: LIFE SUSTAINING SYSTEMS
(Credits:6, Theory-4, Practical-2)
Lectures: 60 (Theory:40, Practical:20)
Max. Marks:100 (Theory:70, Practical:30)

UNIT-I: Digestive System
Structural organization, histology and functions of gastrointestinal tract and its associated glands; Mechanical and chemical digestion of food; Absorptions of carbohydrates, lipids, proteins, water, minerals and vitamins; Role of gastrointestinal hormones on the secretion and control of enzymes of gastrointestinal tract.

UNIT-II: Respiratory System
Histology of trachea and lung; Mechanism of respiration, Pulmonary ventilation; Respiratory volume and capacity; Transport of oxygen in the blood; Oxygen- hemoglobin and myoglobin, dissociation curve and the factors influencing it; Carbon dioxide transport in the blood and Control of respiration.

UNIT-III: Excretory System
Structure of kidney and its histological details; Renal blood supply; Mechanism of urine formation and its regulation and Regulation of acid-base balance.

UNIT-IV: Blood
Components of blood and their functions; Structure and functions of haemoglobin; Haemopoiesis;
Haemostasis and Coagulation of blood.

UNIT-V: Heart
Structure of heart; Coronary circulation; Structure of conducting and working of myocardial fibers; Origin and conduction of cardiac impulses functions of AV node; Cardiac cycle; Cardiac output and its regulation-Frank-Starling Law of the heart; Nervous and chemical regulation of heart rate; Blood pressure and its regulation.

PRACTICAL

1. Enumeration of red blood cells using haemocytometer.
2. Estimation of haemoglobin using Sahlis haemoglobinometer.
3. Preparation of haemin and haemochromogen crystals.
4. Recording of blood pressure using a Sphygmomanometer.
5. Examination of sections of mammalian oesophagus, stomach, duodenum, ileum, rectum liver, trachea, lung and kidney.

Recommended Books

C:5-DIVERSITY AND DISTRIBUTION OF CHORDATA
(Credits:6, Theory-4, Practical-2)
Lectures: 60 (Theory:40, Practical:20)
Max. Marks:100 (Theory:70, Practical:30)

UNIT-I: Protochordata and Origin of Chordates
General characters of Hemichordata, Urochordata and Cephalochordata; Study of larval forms in protochordates; Retrogressive metamorphosis in Urochordata.

UNIT-II: Introduction to Vertebrata and Agnatha
Advanced features of vertebrates over Protochordata; General characters and classification of cyclostomes up to class.

UNIT-III: Pisces and Amphibia
General characters of Chondrichthyes and Osteichthyes and classification up to order; Migration; Osmoregulation and Parental care in fishes; Scales in fishes; General characters and classification up to order and Parental care in Amphibia.

UNIT-IV: Reptilia and Aves
General characters and classification up to order; Skull in Reptilia; Affinities of Sphenodon; Poison apparatus and Biting mechanism in snakes; General characters and classification up to order; Flight adaptations; Archaeopteryx- a connecting link and Migration in birds.

UNIT-V: Mammals and Zoogeography
General characters and classification up to order; Affinities of Prototheria and Metatheria; Dentition in mammals; Zoogeographical realms and Distribution of vertebrates in different realms.

PRACTICAL

Protochordata
2. Sections of Balanoglossus through proboscis and branchiogenital regions.
3. Sections of Amphioxus through pharyngeal, intestinal and caudal regions.
4. Permanent slide of spicules of Herdmania.

Agnatha
5. Petromyzon and Myxine.

Fishes

Amphibia

Reptiles

Aves
10. Study of six common birds from different orders.
11. Types of beaks and claws.
12. Types of feathers.

Mammalia
13. Sorex, Bat (Insectivorous and Frugivorous), Funambulus, Loris, Herpestes and Hemiiechenis.

Recommended Books

C:6-PHYSIOLOGY CONTROLLING AND COORDINATING SYSTEM
(Credits:6, Theory-4, Practical-2)
Lectures: 60 (Theory:40, Practical:20)
Max. Marks:100 (Theory:70, Practical:30)

UNIT-I: Tissues and Glands, Bone and cartilage
Structure, location, function and classification of Epithelial tissue, Connective tissue, Muscular tissue, Nervous tissue; Types of glands and their functions; Structure and types of bones and cartilages.

UNIT-II: Nervous System
Structure of neuron, resting membrane potential; Origin of action potential and its propagation
across the myelinated and unmyelinated nerve fibers; types of synapsis, Synaptic transmission; Neuromuscular junction; Reflex action and its types and Reflex arc.

UNIT-III: Muscle
Histology of different types of muscle; Ultra structure of skeletal muscle; Molecular and chemical basis of muscle contraction; Characteristics of muscle twitch; Motor Unit, summation and tetanus.

UNIT-IV: Reproductive System
Histology of male and female reproductive systems; Puberty; Physiology of reproduction of male and female.

UNIT-V: Endocrine System
Functional Histology of endocrine glands - pineal, pituitary, thyroid, parathyroid, thymus, pancreas, adrenals; Hormones secreted by them and their mechanism of action; Gonadal hormones; Classification of hormones; Regulation of their secretion; Mode of hormone action; Signal transduction pathways utilized by steroidal and non-steroidal hormones.

PRACTICAL
1. Demonstration of the unconditioned reflex action (Deep tendon reflex such as knee jerk reflex).
2. Preparation of temporary mounts: Squamous epithelium, Striated muscle fibres and nerve cells.
3. Examination of sections of mammalian skin, Cartilage, Bone, Spinal cord, Nerve cell, Pituitary, Pancreas, Testis, Ovary, Adrenal, Thyroid and Parathyroid.

Recommended Books

C:7-COMPARATIVE ANATOMY OF VERTEBRATES
(Credits:6, Theory-4, Practical-2)
 Lectures: 60 (Theory:40, Practical:20)
 Max. Marks:100 (Theory:70, Practical:30)

UNIT-I: Integumentary System and Skeletal System
Structure, functions and derivatives of integument; Axial and appendicular skeletons; Jaw suspensorium in vertebrates.

UNIT-II: Digestive and Respiratory System
Alimentary canal and associated glands; Skin, gills, lungs and air sacs and Accessory respiratory organs in fishes.

UNIT-III: Circulatory System
General plan of circulation; Evolution of heart and aortic arches.

UNIT-IV: Urinogenital System
Succession of kidney and Evolution of urinogenital ducts.
UNIT-V: Nervous System and Sense Organs
Comparative account of brain; Autonomic nervous system; Spinal Nerves; Spinal cord; Cranial nerves in Mammals.

PRACTICAL
1. Study of placoid, cycloid and ctenoid scales through permanent slides/photographs.
2. Disarticulated skeleton of Frog, Varanus, Fowl and Rabbit.
3. Carapace and plastron of turtle or tortoise.
4. Mammalian skulls (One herbivorous and one carnivorous animal).

Recommended Books

C:8-BIOCHEMISTRY OF METABOLIC PROCESSES
(Credits:6. Theory-4, Practical-2)
Lectures: 60 (Theory:40, Practical:20)
Max. Marks:100 (Theory:70, Practical:30)

UNIT-I: Biomolecules
Structures and properties of important mono-, di- and polysaccharides; Fatty acids, triglycerides and steroids; and amino acids and proteins.

UNIT-II: Carbohydrate Metabolism
Glycolysis; Citric acid cycle; pentose phosphate pathway; Gluconeogenesis; Shuttle systems (Malate-aspartate shuttle, Glycerol 3-phosphate shuttle); Glycogenolysis; Glycogenesis.

UNIT-III: Lipid Metabolism
beta oxidation of saturated fatty acids with even and odd number of carbon atoms; Biosynthesis of palmitic acid and Ketogenesis and its regulation.

UNIT-IV: Protein Metabolism
Catabolism of amino acids: Transamination, Deamination; Urea cycle; Fate of C-skeleton of Gluconeogenic and Ketogenic amino acids.

UNIT-V: Enzymes
Kinetics and Mechanism of action of enzymes; Inhibition of enzyme action.

PRACTICAL
1. Identification of unknown carbohydrates in given solutions (Starch, Sucrose, Lactose, Galactose, Glucose, Fructose).
2. Colour tests of functional groups in protein solutions.
3. Action of salivary amylase under optimum conditions.
5. Effect of temperature on the action of salivary amylase.

Recommended Books

C:9-CELL BIOLOGY AND GENETICS
(Credits:6, Theory-4, Practical-2)
Lectures: 60 (Theory:40, Practical:20)
Max. Marks:100 (Theory:70, Practical:30)

UNIT-I: Cell and Plasma Membrane
Prokaryotic and Eukaryotic cells; Various models of plasma membrane; Transport across membranes (Diffusion, Active transport, Passive transport, Uniport, Symport and Antiport); Cell junctions.

UNIT-II: Endomembrane System, Mitochondria and Peroxisomes
The Endoplasmic Reticulum; Golgi apparatus; Mechanism of vesicular transport; Lysosomes; Structure and function of mitochondria: Chemiosmotic hypothesis; Semiautonomous nature of mitochondria; Endosymbiotic hypothesis; Peroxisomes.

UNIT-III: Cytoskeleton, Nucleus and Cell Cycle
Microtubules, microfilaments and their functional dynamics; Ultra structure of nucleus; Nuclear Envelope-Structure of nuclear pore complex; Chromosomal DNA and its packaging; Structure and function of Nucleolus; Cell cycle.

UNIT-IV: Mendelian Genetics, Linkage, Crossing Over and Chromosomal Mapping
Principles of inheritance; Incomplete dominance and co-dominance; Multiple alleles, Lethal alleles; Epistasis; Pleiotropy; Sex-linked inheritance; Linkage and crossing over; Cytological basis of crossing over; Molecular mechanisms of crossing over; Recombination frequency as a measure of linkage intensity; Two factor and three factor crosses; Interference and coincidence; Somatic cell hybridization.

UNIT-V: Determination of Sex and Mutations
Chromosomal mechanisms of sex determination; Sex-linked, sex-influenced and sex limited characters; Gene mutations; Chromosomal mutations: Deletion, duplication, inversion, translocation; Aneuploidy and polyploidy; Induced versus spontaneous mutations; Backward and forward mutations; Suppressor mutations; Molecular basis of mutations in relation to UV light and chemical mutagens; DNA repair mechanisms.
PRACTICAL

1. Grams staining technique for visualization of prokaryotic cells.
2. Study various stages of mitosis from permanent slides.
3. Study various stages of meiosis from permanent slides.
4. Study the presence of Barr body in human female blood cells/cheek cells. (Preparation of permanent slides).
5. To study the Mendelian laws and gene interactions and their verification by Chi-square analyses using seeds/beads/Drosophila.

(In practical examination, 05 marks should be of permanent slide submission; one mark each for DNA, PAS, Proteins, MGP and Barr body slide.)

Recommended Books

C:10-EVOLUTIONARY BIOLOGY

(Credits:6, Theory-4, Practical-2)
Lectures: 60 (Theory:40, Practical:20)
Max. Marks:100 (Theory:70, Practical:30)

UNIT-I: History of Life, theories of Evolution and Extinction
Chemogeny, Biogeny, RNA World; Lamarckism; Darwinism; Neo-Darwinism; Mass extinction (Causes, Names of five major extinctions, K-T extinction in detail) and Role of extinction in evolution.

UNIT-II: Evidences of Evolution
Fossils and its types; Dating of fossils, Phylogeny of horse and human.

UNIT-III: Processes of Evolutionary Change
Organic variations; Isolating mechanisms; Natural selection (Industrial melanism, Pesticide/Antibiotic resistance); Types of natural selection (Directional, Stabilizing, Disruptive), Sexual Selection and Artificial selection.

UNIT-IV: Principles of population genetics
Concept of gene pool, Gene frequencies equilibrium frequency (Hardy-Weinberg equilibrium), Shift in gene frequency without selection Genetic drift, Mutation pressure and Gene flow.

UNIT-V: Species Concept and Evolution above species level
Biological concept of species; Sibling species, Polymorphic species, Polytypic species, Ring species; Modes of speciation (Allopatric, Sympatric); Convergence, Divergence and Parallelism.

PRACTICAL
1. Study of fossil evidences from plaster cast models and pictures.
2. Study of homology and analogy from suitable specimens/pictures.
3. Demonstration of changing allele frequencies with and without selection.
4. Construction of cladogram based on morphological characteristics.
5. Construction of phylogenetic tree with bioinformatics tools (Clustal X and Phylip).
6. Interpretation of phylogenetic trees.

Recommended Books

C:11-DEVELOPMENTAL BIOLOGY AND IMMUNOLOGY
(Credits:6, Theory-4, Practical-2)
Lectures: 60 (Theory:40, Practical:20)
Max. Marks:100 (Theory:70, Practical:30)

UNIT-I: Introduction
Mosaic and regulative development; Discovery of induction; Cell-Cell interaction; Pattern formation; Differentiation and growth; Differential gene expression; Cytoplasmic determinants and asymmetric cell division; Reliability of development: Redundancy and negative feed-back.

UNIT-II: Early Embryonic Development
Gametogenesis (Spermatogenesis, Oogenesis); Types of eggs; Egg membranes; Fertilization: Changes in gametes, monospermy and polyspermy; Planes and patterns of cleavage; Early development of frog and chick up to gastrulation; Fate maps; Embryonic induction and organizers.

UNIT-III: Embryonic Development
Fate of germ layers; Extra-embryonic membranes in birds; Implantation of embryo in humans; Placenta (Structure, types and functions of placenta); Metamorphosis: Changes, hormonal regulations in amphibians; Regeneration: Modes of regeneration(epimorphosis, morphallaxis and compensatory regeneration); Ageing: Concepts and models.
UNIT-IV: Immune System and Immunity
Cells and organs of the Immune system; Anatomical barriers, Inflammation, Cell and molecules involved in innate immunity, Adaptive immunity (Cell mediated and humoral), Passive: Artificial and natural Immunity, Active: Artificial and natural Immunity and Immune dysfunctions.

UNIT-V: Antigens, Antibodies and Vaccines
Antigenicity and immunogenicity, Immunogens, Adjuvants and haptens, Factors influencing immunogenicity, B and T-Cell epitopes; Structure and functions of different classes of immunoglobulins, Antigen-antibody interactions, Immunoassays, Polyclonal sera, Monoclonal antibodies, Hybridoma technology and Vaccine.

PRACTICAL
1. Study of whole mounts and sections of developmental stages of frog through permanent slides: Cleavage stages, blastula, gastrula, neurula, tail-bud stage, tadpole (external and internal gill stages).
2. Study of whole mounts of developmental stages of chick through permanent slides: Primitive streak (13 and 18 hours), 21, 24, 28, 33, 36, 48, 72, and 96 hours of incubation (Hamilton and Hamburger stages).
3. Study of developmental stages (above mentioned) by raising chick embryo in the laboratory.
5. Demonstration of lymphoid organs.
6. ABO blood group determination.

Recommended Books

C:12-MOLECULAR BIOLOGY
(Credits:6, Theory-4, Practical-2)
Lectures: 60 (Theory:40, Practical:20)
Max. Marks:100 (Theory:70, Practical:30)

UNIT-I: Nucleic Acids and DNA Replication
Salient features of DNA double helix; DNA denaturation and renaturation; DNA topology - linking number and DNA topo-isomerases; Structure of RNA, tRNA and DNA and RNA associated proteins; DNA Replication in prokaryotes and eukaryotes; Role of proteins and enzymes in replication; Licensing factors; Semi-conservative, bidirectional and semi-discontinuous replication; RNA priming;
Replication of circular and linear ds-DNA.

UNIT-II: Transcription
RNA polymerase and transcription Unit; Mechanism of transcription in prokaryotes and Eukaryotes; Synthesis of rRNA and mRNA; Transcription factors and regulation of transcription.

UNIT-III: Translation
Genetic code, Degeneracy of the genetic code and Wobble Hypothesis; Process of protein synthesis in prokaryotes: Ribosome structure and assembly in prokaryotes; Proteins involved in initiation, elongation and termination of polypeptide chain; Inhibitors of protein synthesis; Difference between prokaryotic and eukaryotic translation.

UNIT-IV: Post Transcriptional Modifications and Processing of Eukaryotic RNA
Structure of globin mRNA; Split genes: concept of introns and exons, splicing mechanism, alternative splicing, exon shuffling, and RNA editing.

UNIT-V: Gene Regulation and Regulatory RNAs
Principles of transcriptional regulation with examples from lac operon and trpoperon; Transcription regulation in eukaryotes: Activators, repressors, enhancers, silencers elements; Gene silencing, Genetic imprinting; Ribo-switches, RNA interference, miRNA and siRNA.

PRACTICAL
1. Study of DNA replication using Photographs or slides and special cases, e.g., Polyteny using permanent slides of polytene chromosomes.
2. Preparation of liquid culture medium (LB) and raise culture of E. coli.
3. Estimation of the growth kinetics of E. coli by turbidity method.
4. Preparation of solid culture medium (LB) and growth of E. coli by spreading and streaking.
5. Demonstration of antibiotic sensitivity/resistance of E. coli to antibiotic pressure and interpretation of results.
6. Quantitative estimation of salmon sperm/calf thymus DNA using colorimeter (Diphenylamine reagent) or spectrophotometer (A260 measurement).

Recommended Books

DSE1A: ANIMAL BEHAVIOUR
(Credits:6, Theory-4, Practical-2)
Lectures: 60 (Theory:40, Practical:20)
Max. Marks:100 (Theory:70, Practical:30)
UNIT-I: Introduction and Mechanisms of Behaviour
Origin and history of Ethology; Brief profiles of Karl von Frisch, Ivan Pavlov, Konrad Lorenz, Niko Tinbergen; Proximate and ultimate behavior; Objective of behaviour, Behaviour as a basis of evolution; Behaviour as a discipline of science; Innate behaviour, Instinct, Stimulus filtering, Sign stimuli and Code breakers.

UNIT-II: Patterns of Behaviour
Reflexes: Types of reflexes, reflex path, characteristics of reflexes (latency, after discharge, summation, fatigue, inhibition) and its comparison with complex behavior.
Orientation: Primary and secondary orientation; kinesis-orthokinesis, klinokinesis; taxistropotaxis and klinotaxis and menotaxis (light compass orientation) and mnemotaxis.
Learning: Associative learning, classical and operant conditioning, Habituation and Imprinting.

UNIT-III: Social Behaviour
Insects society; Honey bee: Society organization, polyethism, foraging, round dance, waggle dance, Experiments to prove distance and direction component of dance, learning ability in honey bee, formation of new hive/queen; Reciprocal altruism, Hamiltons rule and inclusive fitness with suitable examples.

UNIT-IV: Sexual Behaviour
Asymmetry of sex, Sexual dimorphism, Mate choice, Intra-sexual selection (male rivalry), Inter-sexual selection (female choice), Infanticide, Consequences of mate choice for female fitness, Sexual conflict for male versus female parental care and Courtship behaviour in three spine stickleback.

UNIT-V: Biological Clocks
Circadian rhythm, Tidal rhythm, Lunar rhythm, Advantages of biological clocks, Jet lag and Entrainment.

PRACTICAL
1. To study different types of animal behaviour such as habituation, social life, courtship behaviour in insects, and parental care from short videos/movies and prepare a short report.
2. To study nests and nesting habits of the birds and social insects.
3. To study the behavioural responses of wood lice to dry condition.
4. To study behavioural responses of wood lice in response to humid condition.
5. To study geotaxis behaviour in earthworm.
6. To study the phototaxis behaviour in insect larvae.
7. Visit to Forest/ Wild life Sanctuary/Biodiversity Park/Zoological Park to study behavioural activities of animals and prepare a short report.

Recommended Books

DSE-2A: ECONOMIC ZOOLOGY
(Credits:6, Theory-4, Practical-2)
UNIT I: Bee-keeping and Bee Economy (Apiculture)
Varieties of honey bees and Bee pasturage; Setting up an apiary: Langstroths/Newtons hive, bee veil, brood and storage chambers, iron frames and comb sheets, drone excluder, rearing equipments, handling of bees, artificial diet; Diseases of honey bee, American and European Foulbrood, and their management; Honey extraction techniques; Physicochemical analysis of honey; Other beneficial products from bee; Visit to an apiculture institute and honey processing Units.

UNIT I: Silk and Silk Production (Sericulture)
Different types of silk and silkworms in India; Rearing of Bombyx mori, Rearing racks and trays, disinfectants, rearing appliances, black boxing, Chawki rearing, bed cleaning, mountages, harvesting of cocoons; Silkworm diseases: Pebrine, Flacherie, Grasserie, Muscardine and Aspergillosis, and their management; Silkworm pests and parasites: Uzi fly, Dermestid beetles, and their management; Silk reeling techniques and Quality assessment of silk fibre.

UNIT III: Aquaculture I
Brood stock management; Induced breeding of fish; Management of hatchery offish; Management of nursery, rearing and stocking ponds; Preparation and maintenance of fish aquarium; Preparation of compound diets for fish; Role of water quality in aquaculture; Fish diseases: Bacterial, viral and parasitic; Preservation and processing of harvested fish; Fishery by-products.

UNIT IV: Aquaculture II
Prawn farming; Culture of crab; Pearl culture and Culture of air breathing fishes.

UNIT V: Dairy and Poultry Farming
Introduction; Indigenous and exotic breeds; Rearing, housing, feed and rationing; Commercial importance of dairy and poultry farming; Varietal improvement techniques; Diseases and their management; Dairy or poultry farm management and business plan; Visit to any dairy farm or Poultry farm.

PRACTICAL
1. Study of different types of bees (Queens, Drones and Worker bees).
2. Study of different types of silk moths.
3. Study of different types of pearls.
4. Study of different types of fish diseases.
5. Identification of different types of scales in fishes.
6. Study of different types of fins.
7. Study of different modified structures of fishes (Saw of sawfish, Hammer of hammer head fish, tail of sharks etc.)
8. Identification of various types of natural silks.

Recommended Books:

DSE-3A: WILDLIFE CONSERVATION AND MANAGEMENT

(Credits:6, Theory-4, Practical-2)
Lectures: 60 (Theory:40, Practical:20)
Max. Marks:100(Theory:70, Practical:30)

UNIT I:
Wildlife: Values of wildlife, positive and negative; Our conservation ethics; Importance Of conservation; Causes of depletion and World conservation strategies.

UNIT II:
Habitat analysis; Evaluation and management of wildlife; Physical parameters: Topography, Geology, Soil and water; Biological Parameters: food, cover, forage, browse and cover estimation; Standard evaluation procedures: remote sensing and GIS; Management of habitats; Setting back succession; Grazing logging; Mechanical treatment; Advancing the successional process; Cover construction and Preservation of general genetic diversity.

UNIT III:
Population estimation: Population density, Natality, Birth rate, Mortality, fertility Schedules and sex ratio computation; Faecal analysis of ungulates and carnivores: Faecal samples, slide preparation; Hair identification; Pug marks and census method.

UNIT IV:
National Organizations involved in wildlife conservation; Wild life Legislation: Wildlife Protection Act, 1972, its amendments and implementation; Management planning of Wildlife in protected areas; Estimation of carrying capacity; Eco tourism / wildlife tourism in forests; Concept of climax persistence; Ecology of perturbance.

UNIT V:
Management of excess population & translocation; Bio- telemetry; Care of injured and diseased animal; Quarantine and Common diseases of wild animal; Protected areas National parks & sanctuaries, Community reserve; Important features of protected areas in India; Tiger conservation: Tiger reserves in India and Management challenges in Tiger reserve.

PRACTICAL
1. Identification of flora, mammalian fauna, avian fauna, herpeto-fauna.
2. Demonstration of basic equipment needed in wildlife studies use, care and maintenance (Compass, Binoculars, Spotting scope, Range Finders, Global Positioning System, Various types of Cameras and lenses).
3. Familiarization and study of animal evidences in the field; Identification of animals through pug marks, hoof marks, scats, pellet groups, nest, antlers etc.
4. Demonstration of different field techniques for flora and fauna.
5. PCQ, Ten tree method, Circular, Square & rectangular plots, Parkers 2 Step and other methods for ground cover assessment, Tree canopy cover assessment, Shrub cover assessment.
6. Trail/transect monitoring for abundance and diversity estimation of mammals and bird (direct and indirect evidences).

Recommended Books:
2. Jugale K P . Wildlife in India. Daya publishing House, Delhi

DSE-1B: MICROBIOLOGY
(Credits:6, Theory-4, Practical-2)
Lectures: 60 (Theory:40, Practical:20)
Max. Marks:100(Theory:70, Practical:30)

UNIT I:
History of Microbiology; Microbial World: Characterization, Classification and identification of microbes.

UNIT II:
Prokaryotes: General morphology and classification of bacteria, their characters and economic importance; Gram-positive and Gram-negative bacteria.

UNIT III:
Eukaryotes: General morphology of Protista and Fungi; classification and economic importance.

UNIT IV:
Viruses: structure, genome, replication cycle; Epidemiology of infectious diseases with reference to Human Hosts: Bacterial (Tuberculosis), Viral (Hepatitis), Protozoan (Amoebiasis) and Fungal (any one) disease.

UNIT V:
Microbe interactions; Immune Responses; Antibiotics and other chemotherapeutic agents; Applied microbiology in the fields of food, agriculture, industry and environment.

PRACTICAL
3. Pure culture techniques: Streak plate, pour plate and decimal dilution.
4. Cultural characteristics of microorganisms: Growth on different media, growth characteristics and description and demonstration of pigment production.
5. Staining techniques: Smear preparation, simple staining, Grams staining, Acid fast staining and staining for metachromatic granules.
8. Physiology characteristics: IMViC test, H2S, Oxidase, catalase, urease test, Carbohydrate fermentation, Maintenance of pure culture, Paraffin method, Stab culture and maintenance of moldculture.

Recommended Books:

DSE: AGRO-CHEMICALS AND PEST MANAGEMENT
(Credits: 6, Theory-4, Practical-2)
Lectures: 60 (Theory:40, Practical:20)
Max. Marks: 100 (Theory: 70, Practical: 30)

UNIT I: Fundamentals of Pest Management
Pest: Definition, pest resurgence, secondary pest outbreak, Economic injury level, Economic threshold; Types of pests according to damage (sub economic, occasional, perennial).

UNIT II: Insects of Importance
General morphological features of different groups of insects; Study of biting and chewing, and piercing and sucking type of mouth parts.

UNIT III: Pest Management
Integrated Pest Management: Cultural, biological, chemical, genetic control; Agrochemicals: Pesticides, brief history, nomenclature, mode of action of insecticides, tools and techniques for pesticide application, environmental issues; Measurement of insecticide toxicity by estimation of LD50 value of any one insect pest.

UNIT IV: Study of Pest in Laboratory and Field
Visit to agricultural field to study biology, damage and management practices of pests of agricultural crops (Papilio demoleus, Helicoverpa armigera, Leptocorisa acuta, Leucinodes orbonalis, Epilachna vigintioctopunctata).

UNIT V: Rearing of Pests
Rearing of any two important pests; one each from stored grain and agricultural crop in the laboratory and study their different stages.

PRACTICAL
1. Trips IARI fields, CWC, FCI, Stored grain institutes (any two).
2. Biological Agents; (Pathogens NPV); Parasites (Trichogramma); Predators (Gambusia fish, lady bird beetle etc.) [Collection, preservations & Slide preparation].
3. Field Specimen Infested plant/plant parts.
4. Determination of LD50 or LC50 of insecticides based on the data provided.
5. Instruments used in IPM.
6. Bio efficacy of EPN.
7. Dry Lab exercise for SIT efficacy.

Recommended Books:

SEC-1: PUBLIC HEALTH AND HYGIENE
(Credits: 6, Theory-4, Practical-2)
Lectures: 60 (Theory:40, Practical:20)
Max. Marks:100(Theory:70, Practical:30)

UNIT I:
Scope of Public health and Hygiene; nutrition and health; classification of foods; Nutritional deficiencies; Vitamin deficiencies.

UNIT II:
Pollution: water pollution, air pollution, soil pollution, noise pollution, thermal pollution and radioactive pollution.

UNIT III:
Environment and Health hazards; Environmental degradation; health hazards due to pollutants.

UNIT IV:
Communicable diseases and their control measures such as Measles, Polio, Chikungunya, Rabies, Plague, Leprosy and AIDS.

UNIT V:
Non-Communicable diseases and their preventive measures such as Hypertension, Coronary Heart diseases, Stroke, Diabetes, Obesity and Mental ill-health.

Recommended Books:

SEC-2: AQUARIUM FISH KEEPING
(Credits: 6, Theory-4, Practical-2)
Lectures: 60 (Theory:40, Practical:20)
Max. Marks:100(Theory:70, Practical:30)
UNIT I:
The potential scope of Aquarium Fish Industry as a Cottage Industry; Exotic and Endemic species of Aquarium Fishes.

UNIT II:
Common characters and sexual dimorphism of Fresh water and Marine Aquarium fishes such as Guppy, Molly, Sword tail, Gold fish, Angel fish, Blue morph, Anemone fish and Butterfly fish.

UNIT III:
Food and feeding of Aquarium fishes; Use of live fish feed organisms; Preparation and composition of formulated fish feeds.

UNIT IV:
Live fish transport; Fish handling, packing and forwarding techniques; General Aquarium maintenance; budget for setting up an Aquarium Fish Farm as a Cottage Industry.

UNIT V:
Health Education in India; WHO Programmes; Government and Voluntary Organizations and their health services; Precautions, First Aid and awareness on Sporadic diseases.

Recommended Books:

SEC-3: POULTRY FARMING
(Credits:2, Lectures: 30, Max. Marks: 50)

UNIT-I:
External morphology of variety of Fowls such as Plymouth Rock, Light Sussex, Minorca, Rhode Island, Red and White Leghorn.

UNIT-II:
Classification of Fowls based on their use: Meat type such as Broilers, Egg type such as White Leghorn and Commercial layers, Dual purpose varieties, Game and Ornamental purpose varieties.

UNIT-III:
Feeding Poultry Management of Egg Layers Management of Broilers in large scale farms.

UNIT-IV:
Poultry diseases Viral, Bacterial, Fungal, Protozoan and Parasitic Lice etc., Prevention and precautions during vaccination.

UNIT-V:
Management of a modern Poultry Farms Progressive plans to promote Poultry as a Self-Employment venture.

Recommended Books
2. Chauhan H.V.S. Poultry diseases Diagnosis and Treatment New Age (2007)

SEC-4: APICULTURE
(Credits:2, Lectures: 30, Max. Marks: 50)
UNIT-I:
History Biology and classification of honey bee species of honey bees Social organization of honey bee colony.

UNIT-II:
Bee hive; Flora for apiculture; Selection of bees for apiculture, Method of bee Keeping and Indigenous method of Extraction of honey.

UNIT-III:
Modern method of apiculture; Appliances for modern method; Diseases of Honey bee and control measures.

UNIT-IV:
Products of bee keeping : Honey, Bee wax and Bee Yeman; Honey : Production, Chemical composition and Economic importance of Honey bee wax.

UNIT-V:
Bee enemies; Bee keeping industry; Recent efforts; Modern method in employing honey bees for cross pollination in horticultural gardens.

Recommended Books